
BXC-51
BASIC-51 Cross-Compiler

Version 5.0

By TAVVE Software Co.
Written by Anthony V. Edwards

Copyright (c)1989-1995 Binary Technology, Inc.

All Rights Reserved

Binary Technology, Inc. Software License Agreement

The BXC-51 software is copyrighted by and shall remain the property of Binary Technology, Inc. No part of this software or documentation

may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, or otherwise, except for the

express purpose of executing the software on behalf of no more than one user at one time or producing archival copies, without the prior written

permission of Binary Technology, Inc. An extension of this license may be purchased from Binary Technology, Inc. to permit the execution of

the software on behalf of a number of users at one time on one or more machines.

Limited Warranty

With respect to the physical diskette and physical documentation enclosed herein, Binary Technology, Inc. warrants the same to be free of

defects in materials and workmanship for a period of 30 days from the date of purchase. In the event of notification within the warranty period

of defects in material or workmanship, Binary Technology, Inc. will replace the defective diskette or documentation. The remedy for breach of

this warranty shall be limited to replacement and shall not encompass any other damages, including but not limited to loss of profit, and special,

incidental, consequential, or other similar claims.

Binary Technology, Inc. disclaims all other warranties, expressed or implied, including but not limited to the implied warranties of

merchantability and fitness for a particular purpose with respect to defects in the diskette and documentation, and the program license granted

herein, in particular, and without limiting operation of the program purpose, in no event shall Binary Technology, Inc. be liable for loss of profit

or any other commercial damage, including but not limited to special, incidental, consequential, or other damages.

Binary Technology, Inc. assumes no responsibility for any errors that may appear in this document. Binary Technology, Inc. makes no

commitment to update or to keep current the information contained in this document.

Technical Support

Technical support is provided by sending a fax to (508) 369-9549 or calling (508) 369-9556 and asking for technical support. Bug reports may

be faxed directly to (919) 405-2131.

To receive technical support, you must provide the following information: the serial number of your software, the registered owner's name, and

a summary of the problem. If the owner has not registered his/her software, then no support can be provided. To receive phone technical

support, please call (508) 369-9556 and ask for BXC-51 Technical Support.

Guarantee

If you are not completely satisfied with the product, return the disk and manual in good condition within 30 days from the date of purchase to

Binary Technology, Inc. and we will send to you a refund less our standard re-stocking fee.

PC-DOS and IBM are a trademarks of International Business Machines, Inc.

MS-DOS is a trademark of Microsoft Corporation.

BXC-51 is a trademark of Binary Technology, Inc.

MCS is a trademark of Intel Corporation

1

BXC-51
Table of Contents

1. Introduction . 1.

The BASIC Language . 1.

BXC-51 BASIC . 2.

System Requirements . 2.

Installation . 2.

Files Installed . 3.

Getting Started Fast . 4.

Notation Used in this Book . 5.

2. Basic Language Elements . 6.

Basic Symbols . 6.

Reserved Words . 6.

Program Lines . 7.

3. Data Types . 8.

Floating Point . 8.

Integer . 8.

Byte . 9.

Bits . 9.

Static String . 10.

Dynamic String . 10.

Arrays . 10.

Memory Mapped Variables . 11.

4. Expressions . 12.

Operators . 12.

Unary Minus . 13.

Exponentiation Operator . 13.

Multiplying Operators . 13.

Adding Operators . 13.

Bit-Shift Operators . 13.

Relational Operators . 13.

Logical Operators . 13.

Functions . 13.

5. BASIC Commands . 14.

BAUD expr . 16.

CALL addr . 16.

CLEAR . 16.

CLEARI . 17.

CLEARS . 17.

CLOCK0 . 17.

CLOCK1 . 18.

CTRLC0 . 18.

CTRLC1 . 18.

DATA expr [,expr [,...]] . 18.

DEFASM name @ addr [, name @ addr [,...]] . 19.

DEFFN name[$][%][#](param1 [, param2 [, ...]])=expr . 19.

DEFCTRL byte_var @ addr [, byte_var @ addr [,...]] . 20.

DEFVAR var @ addr [, var @ addr [,...]] . 20.

DIM var(expr1) [, var(expr2) [, ...]] . 21.

DISABLE intr . 21.

DO . 22.

ENABLE intr . 22.

END . 22.

FOR var = expr1 TO expr2 [STEP expr3] . 23.

GOSUB line . 23.

GOTO line . 23.

IDLE . 24.

IF TF_expr THEN statements [ELSE statements] . 24.

IF TF_expr THEN . 24.

 statements . 24.

[ELSE IF TF_expr THEN . 24.

 statements2] . 24.

[ELSE . 24.

 statements3] . 24.

ENDIF . 24.

INPUT ["text" [,]] var1 [, var2 [, ...]] . 25.

LD@ expr . 26.

LET var=expr . 26.

NEXT [var] . 27.

ON expr GOSUB line1 [, line2 [, ...]] . 28.

ON expr GOTO line1 [, line2 [, ...]] . 28.

NULL expr . 28.

ONERR line . 28.

ONEX1 line . 29.

ONTIME expr, line . 29.

ONintr line . 30.

PGM . 31.

PH0. print_items . 32.

PH0.@ print_items . 32.

PH0.# print_items . 32.

PH1. print_items . 32.

PH1.@ print_items . 32.

PH1.# print_items . 32.

POP var1 [, var2 [, ...]] . 33.

PRINT print_item1 [, print_item2 [, ...]] [,] . 33.

PRINT@ print_items . 34.

PRINT# print_items . 35.

PUSH expr1 [, expr2 [, ...]] . 35.

PWM expr1, expr2, expr3 . 36.

READ var1 [, var2 [, ...]] . 36.

REM text . 37.

RESTORE . 37.

RETURN . 37.

RETI . 38.

SBUFFER size | OFF | ON | NOECHO | ECHO . 38.

SBUFFER OFF . 38.

SBUFFER ON . 39.

SBUFFER NOECHO . 39.

SBUFFER ECHO . 39.

ST@ expr . 39.

STOP . 39.

STRING expr1, expr2 . 40.

TRACE0 . 40.

TRACE1 . 41.

UI0 . 41.

UI1 . 41.

UNTIL TF_expr . 42.

UO0 . 42.

UO1 . 42.

WHILE TF_expr . 43.

6. BASIC Functions . 44.

ABS(expr) . 44.

ASC(character) . 45.

ASC(strexpr) . 45.

ASC(string,expr) . 45.

ATN(expr) . 45.

CBY(expr), CBY#(expr) . 46.

CHR$(expr) . 46.

COS(expr) . 46.

DBY(expr), DBY#(expr) . 46.

EXP(expr) . 47.

HIGH(expr) . 47.

INT(expr) . 47.

LEFT$(strexpr,expr) . 47.

LEN(strexpr) . 48.

LOG(expr) . 48.

LOW(expr) . 48.

MID$(strexpr,expr1,expr2) . 48.

NOT(expr) . 49.

RIGHT$(strexpr,expr) . 49.

SGN(expr) . 49.

SIN(expr) . 50.

SQR(expr) . 50.

STR$(expr) . 50.

TAN(expr) . 50.

VAL(strexpr) . 50.

XBY(expr), XBY#(expr) . 51.

7. BASIC Special Variables . 52.

ERRLINE% . 52.

ERRVALUE% . 53.

FALSE, FALSE% . 53.

FREE, FREE% . 53.

GET, GET# . 54.

IE, IE# . 54.

IP, IP# . 54.

LEN, LEN% . 55.

MCON# . 55.

MTOP, MTOP% . 55.

PCON, PCON# . 56.

PI . 56.

PORT0# . 56.

PORT1, PORT1# . 56.

PORT2# . 57.

PORT3# . 57.

RAMORG, RAMORG% . 57.

RCAP2, RCAP2% . 58.

RND . 58.

ROMORG, ROMORG% . 58.

T2CON, T2CON# . 58.

TCON, TCON# . 59.

TIME . 59.

TIMER0, TIMER0% . 60.

TIMER1, TIMER1% . 60.

TIMER2, TIMER2% . 60.

TMOD, TMOD# . 60.

TRUE, TRUE% . 61.

XTAL . 61.

8. Getting Started . 62.

Creating Source Code . 62.

The Default Compiler Options . 62.

Commonly Used Compiler Options . 63.

Customizing Compiler Options . 64.

Compiling . 64.

Downloading & Programming . 65.

Running . 65.

Troubleshooting . 65.

9. BASIC Program as Assembly Subroutine . 67.

Initializing a Minimum BASIC Environment . 67.

Converting Your Program Into a Subroutine . 68.

Coexisting with BASIC-52 interpreter . 70.

10. Compiled Program Structure . 71.

Code Memory Architecture . 71.

External Memory Architecture . 72.

Internal Memory Architecture . 74.

Program Initialization . 76.

Program Termination . 78.

11. BXC-51 Programming . 79.

Reducing Program Code Size . 79.

Speeding Up Run-Time Execution . 79.

Optional Integer Expressions . 80.

Optimized Integer Expressions . 81.

Cross-Reference Information . 81.

Line Renumbering . 82.

National Language Support . 82.

8051 Derivative Microcontroller Support . 84.

Derivative Microcontroller Configuration Commands . 85.

EQU address name . 86.

INT address name control-bit intr-bit [vec-addr] . 86.

SFR address name . 87.

SFR2 addressH addressL name . 87.

RAM size . 88.

DPTR [ONLY] . 88.

BXL filename.BXL . 88.

Support for 8xC550 . 88.

ONAD line . 88.

DISABLE AD . 88.

ENABLE AD . 88.

ADAT# . 89.

ADCON# . 89.

WDCON# . 89.

WDL# . 89.

WFEED1# . 89.

WFEED2# . 89.

Support for 8xC552 . 89.

ONADC line . 89.

DISABLE ADC . 89.

ENABLE ADC . 90.

ONCTn line . 90.

DISABLE CTn . 90.

ENABLE CTn . 90.

ONCMn line . 90.

DISABLE CMn . 91.

ENABLE CMn . 91.

ONT2 line . 91.

DISABLE T2 . 91.

ENABLE T2 . 91.

ONS1 line . 91.

DISABLE S1 . 91.

ENABLE S1 . 92.

ADCH# . 92.

ADCON# . 92.

CTCON# . 92.

CTn%, CTn# . 92.

CMn%, CMn# . 92.

IEN0# . 92.

IEN1# . 92.

IP0# . 92.

IP1# . 92.

PORT4# . 92.

PORT5# . 92.

PWMP# . 92.

PWM0# . 92.

PWM1# . 93.

RTE# . 93.

S0CON# . 93.

S1ADR# . 93.

S1DAT# . 93.

S1STA# . 93.

S1CON# . 93.

STE# . 93.

TM2%, TM2# . 93.

T2%, T2# . 93.

TM2CON# . 93.

TM2IR# . 93.

T3# . 93.

12. BASIC/Assembly Linkage . 94.

In-Line Assembly . 94.

Handling Interrupts . 95.

Library Routines . 97.

Floating Point Variable Fetch/Store . 97.

Floating Point Operators/Functions . 98.

Integer Variable Fetch/Store . 99.

Integer Operators/Functions . 99.

Byte Variable Fetch/Store . 99.

Static String Variable Fetch/Store . 100. . . .

Dynamic String Variable Fetch/Store . 100. . . .

Dynamic String Operators/Functions . 101. . . .

Array Variable Fetch/Store . 101. . . .

Text Output to Serial Port . 102. . . .

Text Input from Serial Port . 103. . . .

Simple Custom BASIC Command . 103. . . .

BASIC Extensions through BXLs . 104. . . .

BASIC Command Extentions . 105. . . .

BASIC Function Extentions . 108. . . .

Derivative Microcontroller Extentions . 109. . . .

BXL Programming Tips . 110. . . .

13. Microcontroller Summary . 112. . . .

Special Function Registers . 112. . . .

Instruction Set Summary . 114. . . .

14. BASIC Lanuguage Summary . 121. . . .

BASIC Commands Summary . 121. . . .

BASIC Functions Summary . 123. . . .

BASIC Special Variables Summary . 123. . . .

Operator Summary . 124. . . .

15. Command Line Options . 125. . . .

Debugging On . 125. . . .

Error Trapping On . 125. . . .

Line Numbers Off . 125. . . .

Specify the Beginning of Code (ROM) . 125. . . .

Specify the Beginning of Variables (RAM) . 126. . . .

Specify the Upper Limit of Variables (RAM) . 126. . . .

Specify User Console I/O and Stray Interrupts . 126. . . .

Compile with BASIC Extensions (BXL) . 127. . . .

Compile into Subroutine . 127. . . .

Generate Code for 8051/31 . 127. . . .

Generate Code for 8052/32 . 127. . . .

Generate Code for Use with MCS BASIC-52 Interpreter 128. . . .

Generate Code for DS5000 . 128. . . .

Generate Code for Derivative Microcontroller . 128. . . .

Specifying a Different Output Filename . 128. . . .

Code Generation Only . 128. . . .

Long Assembly Listing . 128. . . .

Additional Assembler Options . 129. . . .

Invoke Simulator Upon Successful Compile . 129. . . .

Generate Memory Map . 129. . . .

Allow User Reset (at 2090H) . 129. . . .

Automatically Setting The Baud . 129. . . .

User Initialization Routine . 129. . . .

Exit Address . 130. . . .

Warm Start . 130. . . .

16. Compiler Error Messages . 132. . . .

17. Run-Time Error Messages . 136. . . .

1. Introduction

Binary Technology, Inc. has been providing engineers and programmers with hardware and
software solutions based on the Intel MCS-51 family of processors since 1982. It continues to be
our goal to produce products that are reliable, easy-to-use, relevant, and affordable.

BXC-51 is a powerful software tool for reducing development time and costs. It's easy to use, as
well.

BXC-51 Version 5.0 is the latest release of BXC-51, the first cross-compiler available for Intel's
MCS BASIC-52 interpreted BASIC, Version 1.1 for the 8052/32 and DS5000 microcontrollers.
It adheres to the Intel standard complete with interrupt support, I/O, and real-time clock. In-line
assembly is supported. The BXC-51 compiler produces an Intel hex format file compatible with
all PROM programmers, monitor-debuggers (such as Binary Technology, Inc.'s M/DP), or
in-circuit emulators. BXC-51 produces an assembly language intermediate file allowing close
examination or optimization by the user.

BXC-51 compiled code runs faster than the BASIC-52 interpreter, provides source-code security,
and allows use of the less expensive 8031/8032 microcontrollers. The BXC-51 compiler provides
flexibility of external memory, program, and I/O locations. BXC-51supports both integer, byte,
floating point and string data types. BXC-51 generates code for the greater 8051 family of
microcontrollers. Command line options directly support the 8051/31, 8052/32, and DS5000 but
any 8051 derivative can be supported through configuration.

This manual assumes that the user is familiar with programming in BASIC. Familiarity with
assembly language programming is not necessary. For additional information, we recommend
"The Intel MCS BASIC-52 Users Manual" Intel Order No. 270010-003, and "BASIC-52
Programming", by Systronix (available from Binary Technology, Inc.). For beginning texts on
BASIC, consult your local computer store or bookstore.

The final page of this documentation is available for you to make suggestions, criticisms, and
comments on enhancements you think would be appropriate to our current products, as well as
products you would like to see us develop.

Thank you for purchasing the BXC-51. We are confident that it will be a significant aid to you in
your 8031/8051 (and family derivatives) development projects.

The BASIC Language

BASIC is a general-purpose, high level programming language originally designed by Thomas E.
Kurtz and John G. Kemeny at Dartmouth College in 1964. BASIC is an acronym for Beginner's
All-purpose Symbolic Instruction Code. It was designed to bring programming to everyone.
BASIC evolved originally from mainframes to minis to personal computers in the 1980s. With
the IBM PC and compatible computers, BASIC was distrubuted to everyone.

Copyright A 1989-1995 Binary Technology, Inc. 1 Version 5.0

Today, we have BASIC-52, the de facto BASIC standard for the 8051 microcontroller family
from Intel, written by John Katausky of Intel in 1985. BASIC-52 is very much a subset of
modern BASIC, but it retains the essential elements. It has English commands and functions
which are easy to remember. It is line oriented with each line beginning with a line number. It's
convenience makes it a popular tool for developing microcontroller applications. Using an
interpreter, programs are easily entered, modified, and executed.

BXC-51 BASIC

BXC-51 V1.0 compiled existing BASIC-52 applications into complete, standalone Assembly
programs. Since V1.0, BXC-51 has extended the BASIC-52 language in a number of ways.
Most particularly, new variable data types and command extensions have been added.

BXC-51 has introduced integer, byte, bit, and dynamic string variables. Variables may be
memory mapped to specific memory locations. Additional special variables have been added for
additional special function registers and to improve error tracking.

BXC-51 interfaces with Assembly easily. The very BASIC lanugage itself may be extended by
using BASIC Extension Libraries (BXL's). Using BXL's allows you to create command and
function extensions to BXC-51 which seamlessly integrate into your BASIC code. Or you may
be using a BXL provided by your local dealer to support special I/O devices. Or, simply, an
assembly routine may be mapped to a BASIC keyword, using DEFASM, to reduce many CALL
statements in code.

A number of smaller, but very useful, changes have been made as well. BASIC line numbers are
now optional. Line labels may be used instead of line numbers. Greater debugging control is
allowed with the TRACE1 command. Serial input can be buffered with SBUFFER. Bit shifting
operators allow you to bit shift numbers left or right. BXC-51 brings BASIC-52 directly to the
8051/31 and DS5000 microcontrollers as well as derivative microcontrollers, such as the 8xC550
or 8xC552, indirectly through customization control.

System Requirements

Before you begin installation, make sure you have the minimum system requirements:

1. A PC-DOS or MS-DOS based machine.

2. 384K of RAM.

3. One floppy disk drive.

4. MS-DOS Version 2.0 or later.

Installation

Insert the original BXC-51 disk into your floppy drive. To begin the installation, type this
command:

Copyright A 1989-1995 Binary Technology, Inc. 2 Version 5.0

C> A:INSTALL

If, however, you inserted the disk in your B: drive, type this command:

C> B:INSTALL

The INSTALL program is very user-friendly. Follow all its instructions. It will first ask you for
your name. Identify yourself, your company name, or both. Do not use initials. Spell out the
words in the space provided.

Next, INSTALL will ask where you wish to install BXC-51. The default is in C:\BXC. Specify
another directory if this default is not satisfactory.

INSTALL now procedes to copy the files off your disk into the target directory. Messages will
be displayed, telling you which files are being read, written, or configured.

When INSTALL finishes, BXC-51 is completely installed.

Make a backup of your original disk and store it in a safe place.

Files Installed

A number of files are on the distribution disk. However, only three are required to run BXC-51.
They are BXC51.EXE, BXC51.LIB, and SXA51.EXE. Additionally, HEX.EXE and
RENUM.EXE are provided as useful utility programs.

BXC51.EXE - This is the BASIC-51 Cross-Compiler. This program takes a BASIC
source code file and converts it to assembly. To generate assembly code,
BXC51.EXE reads sections of the file named BXC51.LIB file. Once the assembly
is generated, the SXA51.EXE assembler is invoked to generate an Intel formatted
HEX file.

BXC51.LIB - This is the library for the BASIC system routines. It is a compressed and
coded copy of source code. When compiling your program, only the needed
routines will be extracted from BXC51.LIB.

SXA51.EXE - This is Binary Technology, Inc.'s 8051/8052 cross-assembler. The
assembler is invoked once all the assembly code has been generated. This program
will always compile without any errors. Any errors in your BASIC source code
will be caught by BXC-51.

RENUM.EXE - This is a BASIC-52 line renumbering utility. Use it to renumber all or
part of your BASIC-52 programs.

HEX.EXE - This is Binary Technology, Inc.'s Intel Hex file manipulation utility.

In addition to the program files, there are many BASIC examples in .BAS files. These files are:

Copyright A 1989-1995 Binary Technology, Inc. 3 Version 5.0

ARRAY.BAS EXPR.BAS LOAD_B.BAS SEEBAUD.BAS
ASM.BAS FOR.BAS LOAD_F.BAS SHLR.BAS
BAUD.BAS GOSUB.BAS LOAD_I.BAS SIEVE_B.BAS
BMARK_B.BAS HELLO.BAS LOGIC.BAS SIEVE_F.BAS
BMARK_F.BAS IE.BAS MEM.BAS SIEVE_I.BAS
CALL.BAS IF.BAS ONGO.BAS SIN.BAS
CLEAR.BAS IF2.BAS PRINT.BAS STRING.BAS
DBY.BAS IFN.BAS PUSH.BAS TAB.BAS
DEFS.BAS INPUT.BAS READ.BAS TIMER.BAS
DIM.BAS LDST.BAS READ2.BAS USING.BAS

DIV0.BAS LET.BAS REM.BAS
WHILE.BAS

The simplest of these examples is HELLO.BAS which outouts the message "Hello, World!" to the
serial port and exits. This is a good place to start when compiling your first BASIC program.

The example files are not copied from your original BXC-51 diskette during installation. If you
wish to copy them, you will need to type the DOS command:

COPY A:*.BAS C:\BXC

If you are anxious to see your new compiler work, try compling HELLO.BAS by following the
instructions in the next section.

Getting Started Fast

If you do not have time now to read this manual thoroughly and are anxious to compile your
BASIC code, this section contains the minimum of what you need to know to begin.

1. Be sure that BXC51.EXE, BXC51.LIB, and SXA51.EXE are in the same directory.

2. To compile your BASIC file, type:
 BXC51 myfile
at the DOS prompt. For example,
 BXC51 HELLO
to compile HELLO.BAS

3. This will generate a file, myfile.HEX, which you can immediately download to your
board. Your program has the following qualities:

a. It starts in ROM (code memory) at 0H (use -paddr to change it, see page 124)

b. External RAM is assumed to start at 0H (use -vaddr to change it, see page 125)

c. All contiguous RAM bytes will be cleared from 0 to E000H (use -uaddr to
change it, see page 125)

d. Set the baud rate by pressing the space bar when the program starts (use -brate

to change it, see page 128)

Copyright A 1989-1995 Binary Technology, Inc. 4 Version 5.0

e. Your program assumes you have an 8051/31 (use -2, -5, -tcpu to change it, see
page 126)

f. If an error occurs, the BASIC source code line number will be displayed (use -l
to change it, see page 124)

g. Only arithmetic errors can be trapped (use -e to change it, see page 124)

h. When the program is finished, it will loop indefinitely (use -xaddr to change it,
see page 128)

i. Your program is a complete, standalone assembly program (use -2i or -sub to
change it, see page 126)

Notation Used in this Book

Different typefaces are used in this book to improve understanding.

Typewriter

Typewriter typeface displays text that is either seen or typed on your PC.

KEYS
Keys that you press on your PC keyboard appear as key outlines, such as cC.

Syntax Descriptions

When describing command syntax, square brackets, [and], denote optional arguments. The
vertical bar, |, denotes multiple options available as a command line parameter, such as ON | OFF.
Text in italics represents text that you must provide, such as a hexadecimal address when you see
addr. Boldface text specifies text you must literally type since it is required in the command
syntax, such as the command name.

Copyright A 1989-1995 Binary Technology, Inc. 5 Version 5.0

2. Basic Language Elements

Basic Symbols

The BASIC language is composed of a number of basic symbols which can be letters, digits, or
special symbols. Letters may be from A to Z, including underscore, '_'. The letters may be in
upper, lower, or mixed case. Case only matters inside "quotes". Digits may be 0 or 1 for binary
numbers, 0 through 9 for decimal numbers, and 0 through 9 and A through F for hexadecimal
numbers (upper case not required). Hexadecimal numbers must begin with a decimal digit, such
as 0, and end with H, e.g. 0F00H. Binary numbers must end with B, e.g. 10100101B. Special
symbols used by BASIC are: + - * / = < > () { } . , : ; " @ # % $

Comments begin with either the keyword REM or a semi-colon, ';'.

Reserved Words

There are a number of reserved words which are used for BASIC commands, functions, and
special variables. Do not use these reserved words for BASIC variables in your program.

ABS DIM LET PWM TAN
AND DO LOG RAMORG TCON
ASC ELSE MCON RCAP2 THEN
ATN END MID$ READ TIME
BAUD ERRLINE MTOP REM TIMER0
CALL ERRVALUE NEXT RESTORE TIMER1
CBY EXP NOT RETI TIMER2
CHR FALSE NULL RETURN TMOD
CHR$ FOR ON RIGHT$ TRACE0
CLEAR FREE ONERR RND TRACE1
CLEARI GET ONEX1 ROMORG TRUE
CLEARS GOSUB ONTIME SBUFFER UI0
CLOCK0 GOTO OR SGN UI1
CLOCK1 HIGH PCON SHL UNTIL
COS IDLE PGM SHR UO0
CR IE PI SIN UO1
CTRLC0 IF POP SPC USING
CTRLC1 INPUT PORT0 SQR VAL
DATA INT PORT1 STOP WHILE
DBY IP PORT2 STR$ XBY
DEFASM LEFT$ PORT3 STRING XOR
DEFCTRL LEN PRINT T2CON XTAL
DEFVAR LEN PUSH TAB

If you are using a BXL to extend the BASIC language, all the commands and functions defined in
the BXL are additional reserved words. Similarly, when programming for 8051 derivatives, there
may be additional reserved words. See BXL or derivative microcontroller documentation for list.

Copyright A 1989-1995 Binary Technology, Inc. 6 Version 5.0

Program Lines

Every BASIC program is composed of a series of lines. Each line contains at least one complete
statement. Multiple statements are separated by colons, ':'. The line may optionally begin with a
line number or line label.

Using line numbers is the traditional form of referencing lines. Each line begins with its reference
number at the left before the BASIC statements. When using line numbers before each line, the
numbers must ascend from low numbers at the beginning of the program to high numbers at the
end. Commands such as GOTO or GOSUB may be followed by the line number to redirect
program control to the specified numbered line.

Instead of using a line number, you may use a line label. Line labels are always in braces (e.g.,
{LABEL}). They can be used anywhere that a line number is used such as at the beginning of a
line or following a GOSUB or GOTO command. Unlike line numbers, line labels do not need to
be in any order. However, like line numbers, each must be unique.

With the advent of BXC-51 V4.0, line numbers and labels are optional. If you do not need a line
number or label at the start of a line, you may omit it. The following is a valid BXC-51 program:

REM this is the beginning
 PRINT "Begin"
 A=0
 {AGAIN} PRINT "Testing..."
 10 TRACE1
 20 A=A+1
 30 PRINT A
 40 TRACE0
 If A < 5 THEN {AGAIN}
 PRINT "Done"
 END

Copyright A 1989-1995 Binary Technology, Inc. 7 Version 5.0

3. Data Types

There are six basic types of variables allowed in BXC-51: floating point variables, integer
variables, byte variables, bit variables, static strings, and dynamic strings. Each of these types,
except bit variables, can be used as an array. Each of these types, except bit and static string
variables, may be memory mapped to a specific location in memory. Bit variables are not unique
variables; they are a variation of integer and byte variables. Variable names for the different types
and for arrays are all unique to their type, so I, I%, I#, I$, I(), I%(), I#(), and I$() represent eight
different variables. However, special function register variables can be represented as either a
floating point, integer, or byte and are not unique, e.g. PORT1 and PORT1#, TIMER0 and
TIMER0%, etc.

Floating Point

Floating point numbers have a decimal place and range from 1 E -127 to .99999999 E 127 (as± ±
well as 0). Eight digits, an exponent, and a sign represent a floating point value. Each floating
point variable occupies 6 bytes of external RAM to store its value. Intel's BASIC-52 uses floating
point variables exclusively, while BXC-51 Version 5.0 uses floating point in addition to the other
types described below.

A valid floating point variable name is any sequence of letters or digits starting with a letter. An
underscore, '_', is considered a letter. There is no limit to the number of letters a variable name
may contain. A floating point array variable may be dimensioned with the DIM statement. Below
are some example floating point variable names:

NO_POINTS NP
 X T4
 SAMPLE3 X34T

Integer

An integer is a number with no decimal place ranging from -32768 to 0 to +32767 (or 8000H to 0
to 7FFFH). An integer variable occupies 2 bytes of external RAM to store its value. Each integer
may be converted to an unsigned (positive) integer by adding the value 65536 to it and storing the
result in a floating point variable.

Overflow and underflow errors are not detected in integer arithmetic. All parts of an integer
expression must remain in the integer range or the result is invalid. For example, if I%=200, then
the result of 200*I%/50 will not be 800 as expected, but instead be -510 because 200*I%
overflowed past 32767 into the negative number range.

A valid integer variable name is any sequence of letters or digits that starts with a letter and ends
with a percent symbol, '%'. An underscore character, '_', is considered a letter. There is no limit
to the number of letters an integer variable name may contain. The following are some example
integer variable names:

Copyright A 1989-1995 Binary Technology, Inc. 8 Version 5.0

NO_POINTS% NP%
 X% T4%
 SAMPLE3% X34T%

Note, however, that some reserved integer variables (RCAP2%, TIMER0%, TIMER1%,
TIMER2%) are not located in external RAM, but internal RAM. They are exceptions.

Byte

A byte is a number that has no decimal place and ranges from 0 to 255. In arithmetic expressions,
a byte may be used anywhere an integer is used. A byte variable occupies up 1 byte of internal
RAM to store its value. There is a limited amount of space for byte variables; 10 bytes on the
8031/51 or DS5000 and 51 bytes available on the 8032/52. Byte variables must be dimensioned
with a constant rather than a run-time expression like other arrays. This is so the byte variable
space can be allocated correctly before your program runs.

A valid byte variable name is any sequence of letters or digits that starts with a letter and ends
with a sharp symbol, '#'. An underscore character, '_', is considered a letter. There is no limit to
the number of letters a byte variable name may contain. Below are some example byte variable
names:

NO_POINTS# NP#
 X# T4#
 SAMPLE3# X34T#

Bits

A bit is a number with the value 0 or 1. In arithmetic expressions, a bit may be used anywhere a
byte or integer is used.

A bit variable is not a unique variable containing only one bit; it is a bit of a byte or integer
variable. To address one bit of a byte or integer variable, specify the variable's name and follow it
with a dot, '.', and a number to represent the bit number. There are 8 bits in a byte, numbered 0 to
7. There are 16 bits in an integer, numbered 0 to 15. Bit 0 is the least significant bit (LSB). Bit
variables may be used in expressions and assigned a value. The following are some example bit
variable uses:

NO_POINTS#.3 NP%.10
 X%.4 T4#.7
 SAMPLE3%.15 DBY(34).0
 PT#(3).4 IVT%(I%+3*J%).12

Note to Assembly programmers: Bit variables are not limited to bit addressable internal RAM
locations. Any internal RAM or external integer may be a bit variable in BASIC.

Copyright A 1989-1995 Binary Technology, Inc. 9 Version 5.0

Static String

A static string is a string of fixed length. Static strings are allocated by the STRING command
which dictates the length of each string and the number of static strings. They cannot be used
until after the STRING command. Static strings are accessed in an array manner.

Static string variable names begin with the dollar sign, '$', followed by an array subscript, from 0
to the highest string number. Below are some example static string variable names:

$(0) $(5)
 $(3) $(10)

$(K) $(I+3*J)

The MCS BASIC-52 interpreter supports static strings. It does not support dynamic strings.

Dynamic String

A dynamic string is very different from a static string. For dynamic string variables, the STRING
command does not need to be executed and string lengths may vary between 0 and 255 bytes as
needed. Each variable length string occupies 3 bytes of external RAM in addition to its value.
The text of the string is stored below MTOP.

A valid dynamic string variable name is any sequence of letters or digits starting with a letter and
ending with a dollar sign. An underscore character, '_' is considered a letter. There is no limit to
the number of letters a string variable name may contain. Below are some example string variable
names:

SITE_NAME$ TYPE$
 X$ T4$
 SAMPLE3$ X34T$

When using dynamic strings, the compiler sets aside the area from 200H to 2FFH (or location
relative to -vaddr command line option) for a string buffer. This string buffer will corrupt any
BASIC program in the interpreter. This is of particular concern when using the -2i command line
option.

Dynamic strings take up an undetermined amount of external RAM, based upon their using in the
BASIC program. As such, they tend to get re-arranged in memory to make best use of available
RAM. This is called garbage collection. Programs that change dynamic variable values
frequently may experience delays when garbage collection is performed.

Arrays

An array packs a data type into a series of variables accessible by index. Arrays may be of
floating point, integer, byte, and dynamic string data types. The DIM command (see page 21) is
used to dimension how many indices are needed for an array.

Copyright A 1989-1995 Binary Technology, Inc. 10 Version 5.0

Array variables follow the same naming convention of their respective types, but are additionally
followed by parenthesis with the index. The index may be a specific number or an expression
which evaluates to the desired index. Below are some example array variable names for the
different data types:

 MOTOR(3) TABLE2(I+3*J)
 COUNT%(3) IRTIME%(I%+3*J%)

PBS#(3) AJE#(5)
PT$(3) IVT$(I+3*J)

Memory Mapped Variables

By default, BXC-51 determines where in memory your variables are stored, typically just above
200H. However, you can override the compiler by using the DEFVAR command (see page 20)
to specify where the variable should be. Floating point, integer, and dynamic string variables may
be mapped to external RAM locations. Byte variables may be mapped to internal RAM locations
(both internal RAM and control registers).

Arrays may also be memory mapped. Normal BASIC array variables occupy 3 bytes of external
RAM which contain the number of indices and the address in memory where the array of numbers
begin. Memory mapped array variables, on the other hand, do not require those 3 bytes. Memory
mapped arrays refer to the actual memory address where the array of numbers begin. No index
checking is performed on memory mapped array variables because they were not DIMensioned.

For example, to memory map REG1% to memory location 6000H and 6001H, use the statement

DEFVAR REG1%@6000H

To refer to a series of integers beginning at 7434H, use the statement

DEFVAR COMMON%()@7434H

To map a byte variable to a control register, use the statement

DEFVAR ADCON#@0C5H

Memory mapped variables and arrays are used in expressions just like non-memory mapped
variables.

Copyright A 1989-1995 Binary Technology, Inc. 11 Version 5.0

4. Expressions

Expressions are formulas for calculating results. Expressions may appear in variable assignments,
as parameters to BASIC commands, as parameters to BASIC functions, or as indices to variable
arrays. Expressions consist of combinations of operands and operators. Operands are variables,
constants, or functions. Operators combine operands to produce another operand. Operators
have different orders of precedence which dictates which operator is used before which.

Expressions may contain parenthesis to explicitly specify which operators are used before others.
There is no arbitrary limit on the number of parenthesis allowed.

BXC-51 has three basic types of expressions: floating point, integer, and string. Floating point
expressions may contain floating point, integer, byte, and bit variables. Integer expressions may
only contain integer, byte, and bit variables. String expressions may only contain string variables.

Operators

Both floating point and integer expressions use the following operators. Dynamic string
expressions may not use the subtraction, multiplication, division, logical, or bit-shift operators.

+ addition
 - subtraction
 * multiplication
 / division
 ** exponentiation (not allowed for integer expressions)
 .AND. logical AND
 .OR. logical OR
 .XOR. logical XOR
 .SHL. bit-shift left
 .SHR. bit-shift right
 = test for equality
 < test for less than
 > test for greater than
 <= test for less than or equal to
 >= test for greater than or equal to
 <> test for inequality

Operators fall into one of six priority levels when evaluated in an expression. The order of
precedence is (where 1 is the highest):

1. Unary minus (negative sign before an operand)
2. Exponentiation: **
3. Multiplication and division: * /
4. Addition and subtraction: + -
5. Shift left and shift right: .SHL. .SHR.
6. Relational operators: < > <= >= = <>

Copyright A 1989-1995 Binary Technology, Inc. 12 Version 5.0

7. Logical operators: .AND. .OR.

Unary Minus

A unary minus immediately precedes the operand it negates. In the case of parenthesis operand,
the whole expression in the parenthesis is evaluated before the result is negated. Unary minus
may be applied to any floating point or integer expression operand.

Exponentiation Operator

The exponentiation operator, **, may only be used in floating point expressions.

Multiplying Operators

The multiplication and division operators, * and /, may be used in floating point and integer
expressions.

Adding Operators

The addition operator, +, may be used in any expression. The subtraction operator, -, may be
used in floating point and integer expressions.

Bit-Shift Operators

The bit-shift operators, .SHL. and .SHR., may be used in floating point and integer expressions.
In floating point expressions, the number to be bit shifted is first converted to an integer, then bit
shifted, and then converted back to a floating point number, thus dropping any decimal
component.

Relational Operators

The relational operators may be used in any expression.

Logical Operators

The logical operators, .AND., .OR., and .XOR., may be used in floating point and integer
expressions. In floating point expressions, the numbers are first converted to an integer, then
combined, and then converted back to a floating point number, thus dropping any decimal
component.

Functions

BASIC allows a variety of functions to be used in expressions. Until you are familiar with all the
functions, BASIC functions may look like array variables to you. When used in an expression,
BASIC functions are followed by parenthesis that contain parameters for the functions.

Function names beginning with FN are user-defined functions (see the DEFFN on page 19) and
may contain multiple parameters as well.

Functions may return floating point, integer, or dynamic string values. See the function
documentation on page 44 for more information.

Copyright A 1989-1995 Binary Technology, Inc. 13 Version 5.0

5. BASIC Commands

A BASIC statement is composed of a BASIC command and its parameters. BXC-51 can compile
all MCS BASIC-52 program statements. Interpreter run-time commands such as LIST, RUN,
RAM, ROM, etc. are inappropriate within a compiled program. The following is a list of these
appropriate BASIC commands followed by an explanation of each. Check marked commands are
available only in BXC-51, not in the interpreter.

BAUD Set printer port baud rate
CALL Call assembly routine by address
CLEAR Clear all variables, arrays, and interrupts
CLEARI Clear all interrupts
CLEARS Clear stack space
CLOCK0 Turn real-time clock off
CLOCK1 Turn real-time clock on

 CTRLC0 Disable control-C usage
 CTRLC1 Enable control-C usage

DEFASM Declare an assembly routine as a BASIC keyword
DEFCTRL Declare a control register as a byte variable
DEFFN Declare a user-defined function
DEFVAR Declare a variable at a specific memory address
DIM Dimension an array
DISABLE intr Disable derivative microcontroller interrupt
DO...UNTIL Loop until a certain condition arises
DO...WHILE Loop while a condition is true
ENABLE intr Enable derivative microcontroller interrupt
END Halt program execution normally
FOR...NEXT Loop with an index variable a finite number of times
GOSUB...RETURN Call a BASIC subroutine
GOTO Jump to another line of BASIC
IDLE Wait for an interrupt to occur
IF...THEN...ELSE Conditionally execute a statement
INPUT Input information from user
LD@ Push a floating point value on the stack from memory
LET Assign an expression to a variable
NULL Configure NULs to be sent after carriage return
ONERR If a program error occurs, GOTO a BASIC subroutine
ONEX1 If external interrupt 1 occurs, GOSUB a BASIC subroutine
ON GOTO On an index, GOTO a BASIC line
ON GOSUB On an index, GOSUB a BASIC line
ONTIME If a timer interrupt occurs, GOSUB a BASIC subroutine
ONintr On a derivative microcontroller interrupt, GOSUB a subroutine
PGM Program an EPROM
PH0. PRINT, outputting numbers in hexadecimal
PH0.@ PH0 . to a user defined output driver

Copyright A 1989-1995 Binary Technology, Inc. 14 Version 5.0

PH0.# PH0 . to the list device
PH1. PRINT, outputting numbers in hexadecimal with leading zeros
PH1.@ PH1. to a user defined output driver
PH1.# PH1. to the list device
POP Pop value(s) off the top of the floating point argument stack
PRINT Output text, numbers, and strings to console device
PRINT@ PRINT to a user defined output driver
PRINT# PRINT to the list device
PUSH Push a value on the floating point argument stack
PWM Pulse width modulation - sound generator
READ...DATA Read a value from a DATA statement with expression(s)
REM or ; A comment
RESTORE Mark all DATA as unread
RETI RETURN from ONTIME or ONEX1
SBUFFER size Specifiy serial buffer size
SBUFFER OFF Disable serial buffering
SBUFFER ON Enable serial buffering
SBUFFER NOECHO Disable user keystroke echo
SBUFFER ECHO Enable user keystroke echo
ST@ Pop a value off floating point argument stack to memory
STOP Abort program execution with a message
STRING Allocate string storage space
TRACE0 Turn off line number tracing
TRACE1 Turn on line number tracing
UI0 Turn off user defined console input routines
UI1 Turn on user defined console input routines
UO0 Turn off user defined console output routines
UO1 Turn on user defined console output routines

These commands take different data type expressions as input. The following explains the syntax.

addr A RAM address, whether a constant or Assembly variable
bit_addr A bit address, from 0 to 7 for bytes, 0 to 15 for integers
byte_var A byte variable name, including trailing #
expr A floating point, integer, or byte expression
int_expr An integer or byte expression
line A line number or line label
name A name used to identify a variable or function
string A static or dynamic string variable or quoted string
string_var A static string variable name, e.g. $(0)
text Any free form text
TF_expr A floating point, integer, or byte variable which evaluates to True

or False
var A variable name, including % or # (if integer or byte)

Copyright A 1989-1995 Binary Technology, Inc. 15 Version 5.0

BAUD expr
Set the baud rate for the printer serial port to the value of expr. Use the PRINT# statement to
output to the printer (also known as the list device). The printer port is only available on the
8052/32 at Port 1, bit 7; this statement is ignored on the 8051/31 and DS5000. PRINT#
statements on the 8051/31 and DS5000 CPUs are redirected to the console serial port at the baud
rate established by the -baddr command line option.

If the BAUD statement is not executed before the first PRINT# statement, a very low baud rate
will be assumed. This statement uses the crystal for timing. If the crystal value is different than
the default (see XTAL on page 61), the baud will not be accurate.

Example:
10 PRINT "This text is output to the serial port"
20 BAUD 1200
30 PRINT
40 PRINT# "This text is output to the line printer"
50 PRINT# "And more text to the line printer"
60 PRINT "And lastly, this text goes to the serial port"

CALL addr
Use this routine to directly call an assembly routine at the address specified by addr. The
Assembly routine must follow the guidelines set forth on page 97 in section "Library Routines".
The Assembly routine must end with a RET instruction to return control to the BASIC program.

If addr is smaller than 80H, addr will be read as shorthand to call routines located above 4100H.
To calculate the full address, multiply addr by 2 and add to 4100H. Hence, CALL 0 would be
shorthand for CALL 4100H, CALL 1 for CALL 4102H, CALL 2 for CALL 4104H, etc. This
affords you the convenience of having an assembly jump table starting at 4100H.

Example:
10 PRINT "This program assumes there are assembly routines"
20 PRINT "at 6000H, 6100H, and 6200H."
30 CALL 6000H ; call the first routine
40 DBY(24)= 10: CALL 6100H ; pass 10 in R0B3 to routine
50 PRINT "Result: ", DBY(25)
60 CALL 6200H ; call last routine

CLEAR
Clear all variables, arrays, and interrupts. The entire variable space is reinitialized to 0H, but the
static string space is left intact. All interrupts are disabled; ONTIME, ONEX1, ONERR, and
ONintr are disabled. CLEAR does not affect the TIME variable. It does not imply a CLOCK0
statement or any DISABLE command.

Example:
10 PRINT "Memory Clear test"
20 a=5
30 PRINT "Start: A=", A, " $(1)= ??"
40 STRING 100,10
50 $(1)= "Hello"

Copyright A 1989-1995 Binary Technology, Inc. 16 Version 5.0

60 PRINT "Before: A=", A, " $(1)=", $(1)
70 a= 7
80 CLEAR
90 PRINT "After: A=", A, " $(1)=", $(1)
; the value of A changes from 5 to 0 to 0 (again)
; the value of $(1) changes from undefined to 'Hello' to ''

CLEARI
Clear all interrupts set by ONTIME, ONEX1, ONERR, and ONintr commands. CLEARI does
not affect the TIME variable. It does not imply a CLOCK0 statement or DISABLE command.

Example:
10 ONEX1 100 ; setup to catch external interrupts
20 TIME=0: CLOCK1
30 DO: GOSUB 3000: UNTIL TIME>3
40 CLEARI ; no more external interrupts

CLEARS
Clear the Control, Argument, and internal stacks. The Control Stack is used to keep track of all
FOR loops, DO loops, and GOSUBs. The Argument Stack is used by floating point calculations,
the PUSH and POP statements, and the LD@ and ST@ statements. The internal stack is reset to
the value in DBY(3EH) which is important only to assembly language programmers who may
want to change the internal stack space. The internal stack default value is 4EH. If no byte
variables are used, this value may be changed to as high as D0H in an 8052/32 (or 60H in an
8051/31, DS5000, or derivative microcontroller) without encountering problems (although lower
values are recomended for programs using complex expressions).

Example:
10 FOR I=1 TO 10
20 PUSH I*I ; load the Argument Stack
30 NEXT
40 GOSUB 3000 ; process some of the Argument Stack
50 CLEARS ; clear all stacks

CLOCK0
Turn off the real-time clock that was turned on by the CLOCK1 statement. The TIME variable
will no longer be updated until the next CLOCK1 statement. Note that on the 8051/31, DS5000,
and derivative microcontrollers, the PGM or PWM statements will interfere with the timing of the
real-time clock.

Example:
10 TIME=0: CLOCK1
20 FOR I=1 TO 10
30 GOSUB 3000 ; do some processing
40 NEXT
50 CLOCK0
60 mins%= INT(TIME/60)
70 secs%= TIME-mins%*60
80 PRINT "Total time: ",mins%, "minutes, ", secs%, "seconds"

Copyright A 1989-1995 Binary Technology, Inc. 17 Version 5.0

CLOCK1
Turn real-time clock on. Interrupts inside the processor will be enabled to update the TIME
variable. The TIME variable will be periodically updated until a CLOCK0 statement is executed.
The CLEAR and CLEARI statements do not perform CLOCK0. Note that on the 8051/31 or
DS5000 CPUs, use of the PGM or PWM statements will interfere with the timing of the real-time
clock.

Example:
(see CLOCK0 example above)

CTRLC0
Disable Ctrl-C usage. Normally, a user may press Ctrl-C to abort execution while a BXC-51
compiled program is running. After disabling Ctrl-C, the user will not be able to interrupt the
program.

Example:
10 CTLRC0 ; do not allow Ctrl-C during initialization
20 FOR motor%=6000H TO 6040H STEP 10H
30 GOSUB 3000 ; initialize this motor
40 NEXT
50 CTRLC1 ; okay to press Ctrl-C now

CTRLC1
Enable Ctrl-C usage. Allow the user to press Ctrl-C to interrupt program execution. When a
BXC-51 compiled program starts, the user may press Ctrl-C until the CTRLC0 statement is
executed. Use CTRLC1 to allow the user to press Ctrl-C once again.

Example:
(see CTRLC0 example above)

DATA expr [,expr [,...]]
A DATA statement contains a series of expressions that can be assigned to variables using the
READ statement. Each datum must evaluate to a number. The READ command reads datum in
succession starting with the first datum of the first DATA command. When all datum has been
read, the next attempt to use READ will cause an OUT OF DATA error unless a RESTORE
command is used first.

It is valid to use expressions that refer to variables or use functions. However, strings are not
permitted.

DATA statements may appear anywhere in your program. The DATA statements are scanned
from the beginning of your program to the end.

Example:
10 PRINT "Testing Read & Data statements"
11 READ a, b, c : REM A= 5, B= 10, C= 15
12 PRINT a, b, c
13 DATA 5,10,15,20 : REM first three ready by line 11

Copyright A 1989-1995 Binary Technology, Inc. 18 Version 5.0

14 DATA a*2
15 READ a, b : REM A= 20, B= A*2 = 40
16 PRINT a, b

DEFASM name @ addr [, name @ addr [,...]]
The DEFASM statement allows you to extend the BASIC language by associating a command
name with an Assembly routine at addr in effect creating your own BASIC command that
requires no parameters. To create BASIC commands that have parameters, you will need to
create a BXL file; see page 104 for details. addr must be an integer constant (in decimal or
hexadecimal form) or it must be an Assembly label. This command eliminates the need to use the
CALL command every time you want to perform a function from an Assembly routine. Place
DEFASM statements at the beginning of your BASIC program before name is used. This
statement is not executed at run-time and does not generate code; it has special meaning to the
compiler to make BASIC and Assembly coding easier.

Once the DEFASM statement has been processed, you may use name as if it were a BASIC
command with no parameters. To pass parameters to assembly routines, (1) use the PUSH or
LD@ command to put values on the argument stack, (2) store values in internal memory between
24 and 31 for the assembly routine to read, (3) pass the parameters via specific memory locations
defined by DEFVAR, or (4) extend the BASIC language using a BXL (see page 104).

Example:
10 DEFASM CHECK @ 5000H, MOVEIT @ 5059H, SHUTDOWN @ MX13
100 FOR I%= 1 TO 20 : CHECK
110 IF DBY(1FH) = 15 THEN MOVEIT
120 NEXT I%
130 SHUTDOWN
140 GOTO 150
$ASM
MX13: MOV DPTR,#06600H
 MOV A,#0
 MOVX @DPTR,A
 INC DPTR
 INC DPTR
 MOVX @DPTR,A
 RET
$BASIC
150 REM

DEFFN name[$][%][#](param1 [, param2 [, ...]])=expr
The DEFFN statement allows you to create a user-defined function. The function may return a
floating point, integer, byte, or string value. Any parameters specified must be of the same data
type as the function. Any number of parameters may be specified. The value for each parameter
is substituted in the appropriate places where mentioned in the expression. For example,

DEFFN IOREG%(OFFSET%)=DBY(0F020H+OFFSET%)

will substitute the function's parameter, OFFSET%, into the DBY() function each time the
function user function FNIOREG%() is used. For example,

Copyright A 1989-1995 Binary Technology, Inc. 19 Version 5.0

PRINT FNIOREG%(3)

will, in effect, perform DBY(0F020H+3) and print the result.

To undefine a function declare it with no parameters and no expression. For example,

DEFFN IOREG%()=

Using the wrong number of parameters to the function causes a PARAMETER MISMATCH
error at run-time. Attempting to use a function that has not yet been defined (or that has been
undefined) will cause the run-time error NO FN DEF.

Example:
10 DEFFN F(X)=X**2/10: DEFFN R(Y)=SQR(Y*10)
20 GOSUB 4000
30 END
4000 REM Output simple graph
4010 FOR I=10 TO 1 STEP -1
4020 ? I, TAB(5), "*", TAB(FN R(I)+5), "o"
4030 NEXT
4040 ? " ***********"
4050 ? " 0 10"
4060 RETURN

DEFCTRL byte_var @ addr [, byte_var @ addr [,...]]
The DEFCTRL statement allows you to declare special function registers (microcontroller control
registers) located at 80H and up with the byte variable name byte_var. Remember that byte
variables end with the # symbol (e.g., TCON#). Place DEFCTRL statements at the beginning of
your BASIC program before byte_var is used. This statement is not executed at run-time and
does not generate code; it has special meaning to the compiler to make special function register in
derivative microcontrollers easier to use. When using the -tcpu command line option, a number
of registers will automatically be generated. See derivative microcontroller documentation for
more information.

Once the DEFCTRL statement is processed, you may use byte_var as if it was any other byte
variable.

Example:
10 DEFCTRL ADCON#@0C5H, ADAT#@0C6H
20 ADCON#.3= 1 ; start A/D conversion
30 DO: WHILE ADCON#.4=0 ; wait for conversion to complete
40 PRINT "Level: ", ADAT#

DEFVAR var @ addr [, var @ addr [,...]]
The DEFVAR statement allows you to control where variables are located in memory. Each
variable name specified, var, will be located at memory address addr. Integer and floating point
variables and arrays are located in external RAM. Byte variables and arrays are located in internal
RAM. Place DEFVAR statements at the beginning of your BASIC program before var is used.
This statement is not executed at run-time and does not generate output; it has special meaning to

Copyright A 1989-1995 Binary Technology, Inc. 20 Version 5.0

the compiler to allow control over variable memory locations. Once the DEFVAR statement is
processed, you may use var as if it was a regular variable.

To specify an array, do not specify its size (e.g., DEFVAR A() @ 5000H). Note that the starting
address of an array is the starting address of it's first value e.g. A(0). It is inappropriate to
DIMension this kind of array.

Example:
10 DEFVAR PARAM1#@24, PARAM2#@25
20 DEFVAR TABLE%()@6002H, TSIZE%@6000H
30 PARAM1#= 13: PARAM2#= 12 ; parameters to assembly
routine
40 CALL 05F20H ; collect data for a while
50 FOR I%= 1 TO TSIZE%
60 PRINT I%, ")", TABLE%(I%)
70 NEXT

DIM var(expr1) [, var(expr2) [, ...]]
Dimension an array variable to a specific size. The expression in parenthesis is the maximum size
for the array. Once dimensioned, an array can be indexed from 0 to the maximum size. Arrays are
limited to one dimension. They cannot be larger than 254, and they cannot be redimensioned
unless a CLEAR statement is first executed. A CLEAR statement removes the previous array
dimension. Arrays that are not dimensioned before they are used are automatically dimensioned
to a maximum size of 10 and cannot be redimensioned.

An attempt to redimension an array will cause an ARRAY SIZE error. Floating point, integer, and
dynamic string arrays may be dimensioned using the result of a calculation (e.g., DIM F(N*2+1)).
Byte arrays must be dimensioned with a constant (e.g., DIM F%(10)). Be aware that byte arrays
compete with byte variables for internal RAM; there are only 10 bytes available in an 8031/51,
DS5000, and derivative microcontrollers; and 51 bytes available in an 8032/52.

Example:
10 DIM TABLE(100)
20 FOR I= 1 TO 100
30 TABLE(I)= GET
40 IF TABLE(I) = 0 THEN 30
50 IF TABLE(I) = 4 THEN I=100 ; exit loop
60 NEXT

DISABLE intr
When using the -tcpu command line option to specify a derivative microcontroller, additional
interrupts may be available. Consult additional documentation for that microcontroller to
determine what interrupts are available and what functions they provide (for example, see 8xC550
documentation on page 88 or 8xC552 documentation on page 89). For each interrupt available,
the ONintr command handles the interrupt and ENABLE allows those interrupts to occur. Use
this command to disable those interrupts.

Example:
10 ONCM1 1000 ; where to go when compare true

Copyright A 1989-1995 Binary Technology, Inc. 21 Version 5.0

20 CM0%= 0A080H ; set the compare value
30 ENABLE CM0
40 DO : UNTIL DONE%
50 END
1000 REM Handle compare interrupt
1010 GOSUB 4000 ; do appropriate action
1020 COMP_COUNT%= COMP_COUNT%+1
1030 IF COMP_COUNT%>=100 THEN DISABLE CM0
1040 RETI

DO
The DO statement is the first part of two statements that form a loop. The body of the loop
contains BASIC statements between DO and WHILE or UNTIL. A loop contains a series of
statements that executed a number of times until a certain condition arises. See the WHILE and
UNTIL statements. A loop is executed at leaset once. Too many embedded DO loops or other
control structures will cause a C-STACK error at run-time.

Example:
; wait until external interrupt 1
DO
 COUNT=COUNT+1
UNTIL TCON#.3

ENABLE intr
When using the -tcpu command line option to specify a derivative microcontroller, additional
interrupts may be available. Consult additional documentation for that microcontroller to
determine what interrupts are available and what functions they provide (for example, see 8xC550
documentation on page 88 or 8xC552 documentation on page 89). For each interrupt available,
the ONintr command handles the interrupt. The ENABLE command allows those interrupts to
occur.

Example:
10 ONTIME 1,2000 ; interrupt at 1 second
20 ONAD 1000 ; where to go when A/D converstion done
30 TIME= 0: CLOCK1
40 DO : UNTIL DONE%
50 END
1000 REM Handle A/D conversion complete interrupt
1010 PRINT "A/D conversion data: ", ADAT#
1020 RETI
2000 REM Handle ONTIME interrupt
2010 ENABLE AD ; start the A/D conversion
2020 ONTIME TIME+1, 2000 ; setup next conversion time
2030 RETI

END
Halt program execution normally and without an error message. If the -xaddr command line
option is specified, it will direct execution elsewhere. Otherwise the program will begin an infinite
loop. When a program ends, all BASIC interrupts are disabled.

Copyright A 1989-1995 Binary Technology, Inc. 22 Version 5.0

Example:
10 PRINT "Hello, World!"
20 END
30 PRINT "The text on this line is never output."

FOR var = expr1 TO expr2 [STEP expr3]
The FOR statement is the first part of two statements that form a loop. The body of the loop is
contained between the FOR and NEXT statements. A FOR statement will execute a finite
number of times advancing from the value of expr1 to expr2 in increments of 1 unless a STEP
value, expr3, is given. The STEP value may be negative in which case the loop will decrease from
expr1 to expr2. The index variable, var, must be a floating point variable, integer variable, or byte
variable. Strings and bit variables are not allowed. Integer index variables only range from
-32768 to +32767; for greater range than that, use a floating point index variable. Byte index
variables range from 0 to 255. Byte variables cannot have a negative STEP value. Too many
embedded FOR loops or other control structures will cause a C-STACK error at run-time.

Example:
10 FOR I%=10 TO -10 STEP -1
20 PRINT I%
30 NEXT I%

GOSUB line
The GOSUB statement allows program control to temporarily switch to another part of the
program to a BASIC subroutine. Program control will change to the line number or label
specified. If line does not exist, a compiler error will be reported. The original location is
resumed after executing a RETURN. Using the GOSUB statement allows you to execute a series
of BASIC statements repeatedly without retyping them; each time you need to execute the series
of statements, just perform a GOSUB.

When a GOSUB is in progress, another GOSUB may be used. BASIC keeps track of nested
GOSUBs. Too many GOSUBs, however, or other control structures will cause a C-STACK
error at run-time.

Example:
5 GOSUB {collect_input}
10 GOSUB 3000 ; process the input
20 GOSUB {output}
30 END
{collect_input} INPUT "Enter a number", A: RETURN
3000 A= SQR(A): RETURN
{output} PRINT "Square root is", A: RETURN

GOTO line
The GOTO statement switches control from one part of the program to another. Program
execution is switched to the line number or label specified.

Example:
10 ? "First": GOTO 100
{alabel} ? "Third": GOTO {blabel}

Copyright A 1989-1995 Binary Technology, Inc. 23 Version 5.0

100 ? "Second": GOTO {alabel}
{blabel} ? "Fourth": GOTO 200
200 ? "Done": END

IDLE
Wait for an interrupt to occur; wait for either an ONTIME or an ONEX1 interrupt to occur and
serviced it. Program execution will be halted until the interrupt occurs. The IDL bit of the PCON
register (bit 0) is set so the microcontroller goes into low power mode (if supported). After the
interrupt is serviced, program execution continues following the IDLE statement.

For assembly programmers writing interrupt handlers, the IDLE statement can be terminated by
setting bit 21H in the interrupt routine. The IDLE statement can be detected because it clears
Port 1, bit 6 when it starts and sets it when it when finished. On the DS5000 microcontroller,
PCON.0 is set to enable Idle Mode.

Example:
10 GOSUB 2000 ; initialize
20 IDLE ; wait for an interruption
30 GOSUB 3000 ; process/update
40 GOTO 20 ; repeat

IF TF_expr THEN statements [ELSE statements]
Single line IF...THEN. If a particular expression TF_expr is true, execute the statement(s)
following THEN. If not, execute the statement(s) following ELSE if ELSE is specified. If a line
number or label follows THEN or ELSE, program execution will switch to the line specified as
though a GOTO had been executed. An IF... THEN...ELSE statement is restricted to a single
BASIC program line and cannot be spread over several lines the way the DO and FOR loops can.

Example:
10 INPUT "Guess my number", A
20 IF A=3 THEN ? "You guessed my number!": END
30 IF A=0 THEN ? "Bye.": END
40 IF A>=2 .AND. A<=4 THEN ? "Getting warmer!"
50 IF A<3 THEN ? "Too Low.": ELSE ? "Too high."
60 ? "I'm thinking of a different number. Try again."
70 GOTO 10

IF TF_expr THEN
 statements
[ELSE IF TF_expr THEN
 statements2]
[ELSE
 statements3]
ENDIF
Multiple line IF...THEN. When using the multiple line form of the IF...THEN command, the
statements part of the command may include multiple statements spread over several lines. There
are several permulations of this command allowed: IF...THEN...ENDIF,
IF...THEN...ELSE...ENDIF, and IF...THEN...ELSEIF...ELSEIF...ENDIF (where the second
ELSEIF really means as many ELSEIF's as necessary and ELSE may be substituted, too). The

Copyright A 1989-1995 Binary Technology, Inc. 24 Version 5.0

key to making an IF...THEN statement a multiple IF...THEN statement is the use of THEN or
ELSE as the last keyword on a line. If a statement follows the THEN or ELSE, the compiler
assumes it is a single line IF...THEN, not a multiple line one.

There is no limit to the number of lines in each statements block. However, multiple line
IF...THEN statments can only be nested 40 levels deep. The ENDIF is required for multiple line
IF...THEN statements; the compiler will report errors when they are missing.

Example:
10 INPUT "Guess my number", A
20 IF A=3 THEN
21 ? "You guessed my number!"
30 ELSE IF A=0 THEN
31 ? "Bye."
40 ELSE
41 IF A>=2 .AND. A<=4 THEN ? "Getting warmer!"
50 IF A<3 THEN
51 ? "Too Low."
52 ELSE
53 ? "Too high."
54 ENDIF
60 ? "I'm thinking of a different number. Try again."
70 GOTO 10
80 ENDIF
90 END

INPUT ["text" [,]] var1 [, var2 [, ...]]
Halt execution of the program until the user has entered some data. If any text appears in double
quotes, the prompt_string message will be displayed before the user is asked for data. If a comma
is present while specifying the prompt string, no question mark will appear and the user will be
prompted on the same line that the prompt string appears. When no comma is present, a question
mark will be placed on the line below the prompt string. The text the user types will be assigned
to the variable specified. If the INPUT statement specifies multiple variables, the user must enter
data to match the exact amount of variables, separated by commas. If not, a TRY AGAIN
message appears and the user will be prompted again. An EXTRA IGNORED message displays
if the user specifies too much information. However, the user will not have to reenter the
information. The variables may be floating point, integer or byte variables or strings (both static
or dynamic). Everything on the rest of the line will be stored in the string if a string is requested.
If multiple strings are specified, multiple prompts will appear until each string has a value.

Example:
10 STRING 100,20
20 INPUT "Your name?", $(0)
30 INPUT "Your age?", AGE
40 ? "Hello, ",$(0),". You have seen", AGE/4, "leapyears."

Copyright A 1989-1995 Binary Technology, Inc. 25 Version 5.0

LD@ expr
The LD@ statement fetches a floating point number from external memory and pushes it onto the
floating point Argument Stack. The address expr specifies the last byte of the 6 bytes that are
used to contain the floating point number. For example, use the

LD@ 6A05H

statement to fetch a floating point number that has been stored beginning at 6A00H. Use the
ST@ command to store the value to another memory location or POP to store it into a floating
point variable. When the Argument Stack is full, attempting to fetch a number onto it causes an
A-STACK error.

Example:
10 FOR I%= 06A00H TO 06A24H STEP 6
20 LD@ I%+5
30 NEXT
40 GOSUB 4000 ; process the 7 numbers on stack
50 POP ANSWER ; get the resulting answer

LET var=expr
The LET statement allows you to assign a value to a variable. The expression must be the same
data type as the variable. Variables may be floating point, integer (with %), byte, (with #), bit
(with %. or #.), static string (as $(n)), or dynamic string data types. Special assignments can also
be made to DBY(), XBY(), and ASC().

1. LET var = expr

Assign the result of an expression to a variable of the same type. A floating point or integer
expression can be assigned to a floating point variable. A floating point expression can not be
assigned to an integer variable or byte variable, only to integer expressions. An error will not
occur if a negative value or positive value larger than 255 is assigned to a byte variable unless the
-g command line flag was specified. A static string may be assigned to a dynamic string and vice
versa, but only dynamic strings may use string expressions to calculate a value; static strings have
restrictions (see below).

2. LET string_var = string

string may be double quoted text, static string variable, or a dynamic string variable. String
expressions cannot be assigned to a static string variable. Dynamic string variables, on the other
hand, can be assigned values from string expressions including static or dynamic string variables,
string functions, and quoted text added together.

3. LET ASC(string_var,expr1) = expr2

A character at position expr1 in a static string can be changed when expr2 is the ASCII code
number of the new character. This does not apply to dynamic strings. For dynamic strings, this
must be done using the LEFT$(), CHR$(), and MID$() functions. For example:

Copyright A 1989-1995 Binary Technology, Inc. 26 Version 5.0

LET A$=LEFT$(A$,pos-1)+CHR$(expr2)+MID$(A$,pos+1,255)

4. LET DBY(expr1) = expr2

Assign a value from a floating point or integer expression, expr2, to an internal RAM location. A
bit address may be specified, e.g. DBY(expr).3.

5. LET XBY(expr1) = expr2

Assign a value from a floating point or integer expression, expr2, to an external RAM location.

6. LET var.bit_addr = expr2

Assign a bit value to a bit in a byte or integer variable. The bit address may range from 0 to 7 for
byte variables and from 0 to 15 for integer variables.

The keyword LET is extraneous. The short form of this statement is to drop the 'LET' and only
specify the assignment.

Example:
LET HALFPI = PI/2
KTABLE(34) = SQRT(HALFPI)
COUNT% = 34+XBY(1204)
LET BIN%(12) = BIN%(12)+1
$(1) = "Var Bind"
SITE$ = "Factor 1209"
EQUIP$(12) = "34-12 Lifter"
ASC($(3),5) = 65
DBY(34H) = 0
XBY(200H) = XBY(0FF00H+I)

NEXT [var]
The NEXT statement is the second part of two statements that form a FOR loop. The body of
the loop is contained between the FOR and NEXT statements. The NEXT statement may
optionally specify the variable's name. If the variable name is given, the loop will always make
sure your NEXT statement loops back to the correct FOR, reporting a C-STACK error if they do
not match. When no variable is specified, NEXT simply loops back to the last executed FOR
statement. After the FOR statement has advanced to its final value, program execution will
resume after the NEXT statement.

If var is specified, make sure it is identical to the index variable in the matching FOR statement. It
must have identical spelling, and if it is an integer or byte variable, it must be followed by '%' or
'#', as appropriate.

Example:
10 FOR I= 1 TO COUNT
20 FOR J= I+1 TO COUNT
30 IF A(J) < A(I) THEN A=A(J): A(J)= A(I): A(I)= A
40 NEXT J
50 NEXT I

Copyright A 1989-1995 Binary Technology, Inc. 27 Version 5.0

ON expr GOSUB line1 [, line2 [, ...]]
The ON...GOSUB statement is used as a multi-branching GOSUB statement. Conditional upon
the value of expr, the first, second, or third, etc., line number or label will be GOSUBed. If expr

is 0, a GOSUB line1 is performed; if expr is 1, a GOSUB line2 is performed; etc. When the
respective RETURN statement is executed, the program will continue execution after the end of
the list of line numbers.

Example:
10 PRINT "1. Collect data"
20 PRINT "2. Process data"
30 PRINT "3. Output data"
40 PRINT "0. Quit"
50 INPUT "Selection? ", A
60 ON A GOSUB 100, 200, 300, 400: GOTO 50
100 END: REM Quit
200 REM Collect data
210 RETURN
300 REM Process data
310 RETURN
400 REM Output data
410 RETURN

ON expr GOTO line1 [, line2 [, ...]]
The ON...GOTO statement is used as a multi-branching GOTO statement. Conditional upon the
value of expr, the first, second, third, etc. line number or label will be GOTOed. If expr is 0, then
a GOTO line1 is performed; if expr is 1, then a GOTO line2 is performed; etc.

Example:
10 PRINT "1. Instructions"
20 PRINT "2. Proceed with operation"
30 PRINT "3. Abort operation now"
40 INPUT "Selection? ", A
50 ON A GOSUB 40, 100, 200, 300: GOTO 40
100 REM Instructions
200 REM Proceed with operation
300 REM Abort operation now

NULL expr
Specify the number of NUL characters to output after each carriage return. Older printers which
do not have line buffers may require a series of NUL characters to be output after each carriage
return (CR) that is printed to the serial port. This command configures the number of NUL
characters to output.

Example:
10 NULL 8
20 PRINT "Hello, World!"

ONERR line
Specify the program line to switch to in the event of an arithmetic error. Should an error occur, a
GOTO will be induced to line. The error number will be stored in the variable ERRVALUE%

Copyright A 1989-1995 Binary Technology, Inc. 28 Version 5.0

and the line number where the error occurred will be stored in the variable ERRLINE% (see page
52). The CLEAR and CLEARI statements will remove the ONERR statement's error trapping
ability.

If the -e command line option was specified to trap all errors (not just arithmetic errors), then any
error will cause a GOTO to line. If you have an error in your error handling routine, your
program will loop forever.

Example:
10 ONERR 1000
20 A= 20
30 B= 0
40 C= A/B: REM this causes /0 error
50 PRINT "Answer: ",C
60 END
1000 PRINT "Error", ERRVALUE%, "in line", ERRLINE%
1010 REM take corrective action

ONEX1 line
Specify the subroutine to execute when external interrupt 1 is detected. Should an external
interrupt 1 occur, a GOSUB will be induced to line. To return from the subroutine, a RETI
instruction must be used in place of the usual RETURN. When an external interrupt 1 occurs, the
normal program flow is temporarily suspended while the interrupt is being processed. The
program will then resume where it left off. The CLEAR and CLEARI statements will remove the
ONEX1 statement's interrupt processing ability until the next ONEX1 statement is encountered.
Without the ONEX1 statement, BXC-51 generates code that ignores external interrupt 1 (except
to vector it to 4013H or wherever the -caddr command line option specifies).

Note that the EX1 interrupt is polled which causes latentcy between when the interrupt occurs
and when the BASIC subroutine services it. This may be a concern for applications that need
immediate interrupt service.

Example:
10 ONEX1 1000
20 DONE = FALSE
30 DO
40 GOSUB 4000 ; collect information
50 GOSUB 5000 ; process information
60 UNTIL DONE
70 END
1000 REM EX1 interrupt
1010 DONE = TRUE
1020 GOSUB 6000 ; output information
1030 RETURN

ONTIME expr, line
Specify the subroutine to be executed when the TIME variable is greater than or equal to expr.
For this comparison, only the seconds are compared rather than milliseconds or smaller. If the
TIME variable becomes greater than or equal to expr, a GOSUB will be induced to line. To

Copyright A 1989-1995 Binary Technology, Inc. 29 Version 5.0

return from the TIME subroutine, use a RETI instruction instead of a RETURN. When a TIME
interrupt occurs, program flow is only temporarily interrupted. The ONTIME interrupt is cleared.
Therefore, if you want another TIME interrupt, you must execute another ONTIME statement for
the next timer interval. No TIME interrupts will occur unless a CLOCK1 has been executed to
enable the real-time clock which updates the TIME variable. Note that on the 8051/31, DS5000,
and derivative microcontrollers, the PGM and PWM statements will interfere with the timing of
the real-time clock.

Note that the timer interrupt is polled which causes latentcy between when the time matches and
when the BASIC subroutine services it. This may be a concern for applications that need
immediate precise timing.

Example:
10 TIME=0 ; reset time
20 CLOCK1 ; enable clock
30 ONTIME 1,1000 ; interrupt at 1 second
40 DO
50 WHILE TIME<9: END ; stop at 9 seconds
1000 REM ONTIME Interrupt
1010 a= TIME
1020 PRINT "Timer interrupt at -",a,"seconds"
1030 ONTIME a+2,100 ; interrupt 2 seconds from now
1040 RETI

ONintr line
When using the -tcpu command line option to specify a derivative microcontroller, additional
interrupts may be available. Consult additional documentation for that microcontroller to
determine what interrupts are available and what functions they provide (for example, see 8xC550
documentation on page 88 or 8xC552 documentation on page 89). For each interrupt available,
an ONintr command may be used, where intr is the name of the interrupt.

The ONintr command specifies the subroutine to execute when the interrupt occurs. When the
interrupt occurs, a GOSUB will be induced to line. To return from the subroutine, use a RETI
instruction instead of a RETURN. When the interrupt occurs, program flow is only temporarily
interrupted. No interrupts will occur unless an ENABLE statement has been executed to enable
intr. Use the DISABLE statement to disable the interrupt.

Example:
10 ONAD 1000 ; when A/D conversion completes
20 ENABLE AD ; begin A/D conversion
30 AD_READY%= FALSE
40 DO : UNTIL AD_READY%
50 PRINT "A/D data:", ADAT#
60 END
1000 AD_READY%= TRUE
1010 RETI

Copyright A 1989-1995 Binary Technology, Inc. 30 Version 5.0

PGM
The PGM statement programs a block of RAM into an EPROM. The RAM starting address,
EPROM starting address, number of bytes, and programming pulse must be stored in internal
RAM (see diagram below). The RAM starting address must be put in DBY(1BH) (high byte) and
DBY(19H) (low byte). The EPROM starting address must be put in DBY(1AH) (high byte) and
DBY(18H) (low byte). The number of bytes to be programmed must be put in DBY(1FH) (high
byte) and DBY(1EH) (low byte). The width of the EPROM programming pulse must be put in
DBY(41H) (high byte) and DBY(40H) (low byte). Calculate the width value by using the formula

 where width is the EPROM pulse width in seconds. For example, use a width65536 − (width×XTAL)
12

of 0.001 for 1 millisecond. Finally, bit 26H.3 must be set to select the INTELligent programming
and cleared to select the normal 1 millisecond algorithm. Setting the bit can be performed by

DBY(26H).3 = 1

or cleared by performing

DBY(26H).3 = 0

If no errors occur, DBY(1FH) and DBY(1EH) will be zero. If the values are non-zero, the
operation was unsuccessful. The PGM statement can only be used when run from internal ROM,
such as the 8751, 8752, mask programmed, or Dallas Semiconductor's 'DS' series
microcontrollers. Note that on the 8051 (2 counter/timer) microcontrollers, use of the PGM or
PWM statements will interfere with the timing of the real-time clock.

Purpose of value Location (high) Location (low)

Start of block in RAM (source) DBY(1BH) DBY(19H)

Number of bytes in block DBY(1FH) DBY(1EH)

Start of block in EPROM (target) DBY(1AH) DBY(18H)

Programming pulse DBY(41H) DBY(40H)

Example:
10 ADDRRAM=1060H: BLOCK_LEN= 400H
20 ADDRROM= 8000H: PULSE= .075 ; 75 milliseconds
30 GOSUB 5000 ; program it
40 END
5000 RELOAD= 65536 - PULSE * XTAL/12
5010 DBY(41H)= HIGH(RELOAD): DBY(40H)= LOW(RELOAD)
5020 DBY(1BH)= HIGH(ADDRRAM): DBY(19H)= LOW(ADDRRAM)
5030 DBY(1FH)= HIGH(BLOCK_LEN): DBY(1EH)= LOW(BLOCK_LEN)
5040 DBY(1AH)= HIGH(ADDRROM): DBY(18H)= LOW(ADDROM)
5050 PGM
5060 IF DBY(1FH) <> 0 .OR. DBY(1EH) <> 0 THEN
5070 PRINT "Range Program Failed."
5080 ENDIF
5090 RETURN

Copyright A 1989-1995 Binary Technology, Inc. 31 Version 5.0

PH0. print_items
The PH0. command is identical to the PRINT command in every respect except for how it
outputs its numbers. The PH0. command displays numbers smaller than 100H in hexadecimal
without leading zeros. The character 'H' will follow the number to indicate that the number is
hexadecimal.

Example:
10 ONTIME 1,100
20 DEFVAR OTADDR%@126H
30 PH0. "Interrupt routine @", OTADDR%

PH0.@ print_items
The PH0.@ command is the same as the PH0. command except that it outputs the value to a user
defined output driver (at 403CH or wherever the -caddr command line option specifies). To
enable PH0.@ to use the user defined output driver, DBY(24H).7 must be set.

PH0.# print_items
The PH0.# command is identical to the PH0. command except that it outputs the value to the list
device (see the BAUD command on page 16). On the 8051/31, DS5000, and derivative
microcontrollers, this command does not write to the list device, instead it uses the serial port.

PH1. print_items
The PH1. command is the same as the PRINT command in every respect except how it outputs
its numbers. The PH1. command always displays its numbers as four hexadecimal digits, with
leading zeros as necessary. The character 'H' will be displayed following the number to clearly
delineate the number as a hexadecimal number.

Example:
10 INPUT "Enter a floating point number:", A
20 PUSH A
30 ST@ 12
40 PRINT "Hex representation: ",
50 FOR I%= 7 TO 12
60 PH1. XBY(I%),
70 NEXT
80 PRINT

PH1.@ print_items
The PH1.@ command is identical to the PH1. command except that it outputs the value to a user
defined output driver (at 403CH or wherever the -caddr command line option specifies). To
enable PH1.@ to use the user defined output driver, DBY(24H).7 must be set.

PH1.# print_items
The PH1.# command is identical to the PH1. command except that it outputs the value to the list
device (see the BAUD command on page 16). On the 8051/31, this statement does not write to
the list device, but uses the serial port instead.

Copyright A 1989-1995 Binary Technology, Inc. 32 Version 5.0

POP var1 [, var2 [, ...]]
The POP command is used to remove values from the top of the floating point Argument Stack
and store them in the specified variable(s). Use the PUSH or LD@ commands to put values on
the floating point Argument Stack. If the Argument Stack is empty, attepting to remove a value
from it causes an A-STACK error.

The specified variables may be floating point, integer, or byte variables.

Some programmers use the POP command inside subroutines to receive data PUSHed before the
GOSUB was performed, storing the values in the subroutine's special variables.

Example:
10 INPUT "Leg lengths in a right triangle: ", L1, L2
20 PUSH L1, L2
30 GOSUB 2000
40 POP H
50 PRINT "Hypotenuse: ", H
60 END
2000 POP A, B
2010 PUSH SQR(A*A+B*B) ; calculate hypotenuse
2020 RETURN

PRINT print_item1 [, print_item2 [, ...]] [,]
The PRINT command is a general purpose output statement to the serial port. Follow the PRINT
command with a list of print items, each separated by a comma. Normally, a CR-LF sequence
follows each printed line. To suppress this, place a comma at the end of the line.

In a PRINT statement, print_item can be:

1. A floating point, integer, byte, or bit expression. It will be displayed in a general form
unless a USING command has changed the default numeric output format.

2. A double quoted string, string variable or string expression.

3. TAB(expr) will print spaces up to the column that expr specifies. If the cursor or
printhead is already beyond the tab location, the request is ignored.

4. SPC(expr) will print the specified number of spaces.

5. CHR(expr) will output the ASCII character for the code expr. CHR(string, expr) will
output a specific character at position expr from inside a static string variable.

6. CR will output a single CR without an LF. Follow with a comma to suppress another
CR-LF.

7. USING(codes) specifies a new format for floating point numbers to use until the next
USING statement is executed. The codes for the USING statement come in two
varieties; fraction and combined specifications. For the fraction specification, use
'F' followed by the number of digits in the fraction that should be displayed. For

Copyright A 1989-1995 Binary Technology, Inc. 33 Version 5.0

example, USING(F3) will output all numbers to 3 decimal places with trailing
zeros if necessary. The number of digits in the fraction can be from 3 to 8 (1 and 2
are promoted to 3).

If USING(0) is specified, the number is output in a general form which is the
default when your program first starts.

The combined fraction and integer specification allows you to specify the number
of integer digits to display and the number of fraction digits to display. Do this by
using pound signs, '#', separated by a decimal point. For example, USING(###.##)
would output numbers to two decimal places, allowing up to three digits for the
integer part. If you do not want to display any fraction part, the decimal is not
required. A maximum of eight pound signs are allowed (the compiler will
complain if you try to use more).

Example:
10 INPUT "Any number: "A
20 ? "You typed:", A
30 IF A < 0 THEN I$="i": A= ABS(A)
40 PRINT "Square root of it is", SQR(A), I$
50 PRINT "Square root to 2 decimal places is", USING(#.##),
SQR(A), I$
60 PRINT TAB(13), "3 decimal places is", USING(#.###),
SQR(A), I$
70 PRINT SPC(13), "4 decimal places is", USING(#.####),
SQR(A), I$

10 PRINT "Example cursor flips:"
20 DEF FN EVEN%(N%)=NOT(N%/2-N%/2) ; nifty test for even
30 DELAY= 100
40 C(0)= ASC(-)
50 C(1)= ASC(\)
60 C(2)= ASC(|)
70 C(3)= ASC(/)
80 FOR FLIPS%=1 TO 20 ; 10 rotations
90 FOR I%= 0 TO 3
100 PRINT CHR(C(I%)), CR,
110 FOR X=1 TO DELAY: NEXT ; pause
120 NEXT
130 IF FN EVEN%(FLIPS%) THEN PRINT CHR(7), CR, ; chirp
140 NEXT
150 PRINT

PRINT@ print_items
The PRINT@ command is identical to the PRINT command except that it outputs the value to a
user defined output driver (located at 403CH or wherever the -caddr command line option
specifies). To enable PRINT@ to use the user defined output driver, DBY(24H).7 must be set.

Example:
10 buffer%= 8000H ; location of character buffer

Copyright A 1989-1995 Binary Technology, Inc. 34 Version 5.0

20 DBY(24H).7= 1 ; enable @ output
30 PRINT@ "Hello, World!" ; store message starting at 8000H
40 END
$ASM
HERE EQU $
 ORG 403CH ; create console output handling
 PUSH DPL ; save DPTR
 PUSH DPH
 MOV DPTR,#IV_BUFFER
 CALL LDPTRI ; DPTR = BUFFER%
 MOVX @DPTR,A ; save character
 INC DPTR ; update pointer
 MOV R1,DPL
 MOV R3,DPH
 MOV DPTR,#IV_BUFFER
 CALL IPUTVAR
 POP DPH ; restore DPTR
 POP DPL
 RET
 ORG HERE
$BASIC

PRINT# print_items
The PRINT# command is the same as the PRINT command except that it outputs the value to the
list device (see the BAUD command on page 16). On the 8051/31, DS5000, and derivative
microcontrollers, this statement does not write to the list device; it uses the serial port instead.

Example:
10 BAUD 1200
20 PRINT# "Report of collected data"
30 PRINT# "========================"
40 COUNT%=1
50 FOR I%=6000H TO 6FFFH
60 LD@ I%+5
70 POP N
80 PRINT# COUNT%, ")", N
90 COUNT%= COUNT% + 1
100 NEXT

PUSH expr1 [, expr2 [, ...]]
The PUSH command is used to put values calculated from expressions on the floating point
Argument Stack. Use the POP or ST@ command to remove values from the floating point
Argument Stack. When the Argument Stack is full, attempting to PUSH a value causes an
A-STACK error.

Some programmers use the PUSH command before subroutines to pass data that will be POPed
and stored in variables specific to the subroutine.

Example:
10 REM Copy data to non-volatile memory
30 memaddr%= 6000H

Copyright A 1989-1995 Binary Technology, Inc. 35 Version 5.0

20 DO
30 READ n
40 PUSH n
50 ST@ memaddr%+5
60 memaddr%= memaddr%+6
70 UNTIL n=0
80 DATA SIN(PI/6), SIN(PI/3), SIN(PI/2), SIN(PI*2/3),
SIN(PI*5/6), 0

PWM expr1, expr2, expr3
The PWM statement generates a variable duty cycle pulse train on Port 1, bit 2 (P1.2) that can be
used for many purposes. The first number, expr1, is the number of clock cycles that the pulse will
remain high. The second number, expr2, is the number of clock cycles that the pulse will remain
low. The third number, expr3, is the total number of desired iterations. Each of these three
expressions must be integers between 0 and 65535. However, the first two expressions must be
larger than 24. The default length of a clock cycle is 12.0/XTAL seconds, which is 1.085
microseconds for 11.0592 MHz.

Note that on the 8051/31, DS5000, and derivative microcontrollers, the PGM and PWM
commands interfere with the timing of the real-time clock. Refer to the CLOCK1 statement on
page 18.

Example:
10 K=.2304147 ; assuming clock of 11.0592 MHz
20 INPUT "Microseconds high:" hms
30 INPUT "Microseconds low:" lms
40 INPUT "How many cycles", cycles%
50 PWM hms*K, lms*K, cycles

READ var1 [, var2 [, ...]]
The READ statement will assign one value per variable specified collected from a DATA
statement. The values for these variables are obtained by scanning the DATA statements starting
at the top of your program. Once a DATA value is read, READ moves on to the next DATA
value until it runs out of DATA. The RESTORE statement can be used to start reading DATA
from the first item of DATA. If DATA statements contain variables, READing them at different
times may generate different values. The specified variables may be floating point, integer, or byte
variables. An attempt to read data when all DATA statements have been read will cause an OUT
OF DATA error.

Example:
10 CLOCK1
20 READ INTERVAL
30 IF INTERVAL = 0 THEN END
40 GOSUB {START_PROCESS}
50 TIME= 0
60 DO : WHILE TIME<INTERVAL ; time the process
70 GOSUB {STOP_PROCESS}
80 GOSUB {NEXT_PROCESS}
90 GOTO 20 ; handle next interval
100 DATA 3.9, 2.4, 1.2, .79, .43, .25, .15, .1, .08, .05, 0

Copyright A 1989-1995 Binary Technology, Inc. 36 Version 5.0

REM text
; text

The REM statement causes the text that follows it to be ignored. BXC-51 will not generate any
code if the -l command line option is specified. The REM statement allows the programmer to
put helpful commentary text into a program to help clarify it. A REM statement on a line by itself
without a line number will not generate any code. The semicolon ';' may be used in place of the
keyword 'REM'. Use many REM statements to keep your source code well documented.

Example:
REM Example Hello World program
10 PRINT "Hello, World!" ; output the message
20 REM That's it

RESTORE
The RESTORE statement will make the next READ statement fetch values from the first DATA
statement in the program. RESTORE allows the same DATA to be read multiple times.

Example:
10 FOR COUNT=1 TO 5
20 RESTORE ; start reading data from beginning
30 FOR I=2 TO I: READ A: NEXT ; skip some
40 FOR I=COUNT TO 5
50 READ SUM(I-COUNT)
60 NEXT
70 NEXT COUNT
80 DATA 1, 1/2, 1/4, 1/8, 1/16
90 FOR COUNT=0 TO 4
100 PRINT SUM(COUNT)
110 NEXT

RETURN
Use the RETURN statement to finish a subroutine and return control to to just after the GOSUB
to the subroutine. If there is no matching GOSUB, a C-STACK error occurs. Do not use this
statement to return from an ONTIME, ONEX1, or ONintr interrupt subroutine - use RETI
instead. Doing so will prevent another interrupt from being processed.

You may RETURN from inside a FOR or DO loop. The loops will be terminated upon RETURN
(however, any loops used outside the subroutine will still be active).

Example:
10 FOR I%=0 TO 16
20 GOSUB 4000
30 NEXT
40 END
4000 PH1. I%
4010 RETURN

10 DIM A(100)
20 GOSUB 20000 ; get data to fill array A()
30 FOR I%=1 TO 100 STEP 10

Copyright A 1989-1995 Binary Technology, Inc. 37 Version 5.0

40 POS1%= I%: POS2%= I%+9
50 GOSUB {OUTPUT}
60 NEXT
70 END
{OUTPUT} REM Output routine
4000 PRINT POS1, ":",
4010 FOR POS%=1 TO 100
4020 IF POS% >= POS1% THEN PRINT A(POS%),
4030 IF POS2%=POS% THEN PRINT: RETURN
4040 NEXT
4050 PRINT
4060 RETURN

RETI
Use the RETI statement to complete an interrupt subroutine and return control to the section of
the program that was executing before the interrupt occurred. It will perform a RETURN as well
as allowing new interrupts to occur.

Example:
10 TIME=0 ; reset time
20 CLOCK1 ; enable clock
30 ONTIME 1,1000 ; interrupt at 1 second
40 DO
50 WHILE TIME<9: END ; stop at 9 seconds
1000 REM ONTIME Interrupt
1010 PRINT "Timer interrupt!"
1020 RETI

SBUFFER size | OFF | ON | NOECHO | ECHO
This command controls how BXC-51 buffers input from the serial port. Normally, BXC-51 does
not buffer its input (like MCS BASIC-52). Use this statement to allow buffering in your program.
The buffer size must be a constant and must be between 1 and 253. This command should appear
near the top of your program. Only specify the buffer size once; the buffer cannot dynamically
change. A buffer size of 0 means no buffering. Once your program starts, all input will be
buffered (for the GET function and the INPUT command). If the serial buffer becomes full,
additional input is ignored until GET or INPUT fetches characters from the buffer.

Example:
10 SBUFFER 100 ; allow 100 characters to be buffered
20 ? "Type text now and see it appear in 3 seconds."
30 CLOCK1: TIME= 0
40 DO : UNTIL TIME>3 ; wait 3 seconds
50 INPUT "Code: ", PASSWORD$

SBUFFER OFF
Use SBUFFER OFF to switch off serial line buffering temporarily. Any input currently in the
serial buffer is lost.

Example:
10 SBUFFER 100 ; allow 100 characters to be buffered
20 ? "Type text now and see it ignored in 3 seconds."

Copyright A 1989-1995 Binary Technology, Inc. 38 Version 5.0

30 CLOCK1: TIME= 0
40 DO : UNTIL TIME>3 ; wait 3 seconds
50 SBUFFER OFF : SBUFFER ON ; flushes buffer
60 INPUT "Code: ", PASSWORD$

SBUFFER ON
Use SBUFFER ON to switch serial line buffering back on.

SBUFFER NOECHO
Use SBUFFER NOECHO to turn off the echo feature of the INPUT statement. Normally, as the
user enters data to an INPUT command, BXC-51 echoes the characters back out to the serial line.
Use NOECHO to turn off that echo temporarily.

Example:
10 SBUFFER 100 ; allow 100 characters to be buffered
30 INPUT "Login name: ", NAME$
40 SBUFFER NOECHO
50 INPUT "Password: ", PASSWORD$
60 SBUFFER ECHO

SBUFFER ECHO
Use SBUFFER ECHO to turn character echo back on for the INPUT command.

ST@ expr
Take the value from the top of the floating point Argument Stack and store it in external memory.
For the six bytes of memory that a floating point number occupies, expr must be the address of
the last byte. For example, use the

ST@ 6A05H

statement to store the value found on the top of the floating point argument stack in memory
beginning at 6A00H. Use LD@ or PUSH commands to place values on the Argument Stack. If
there is no value on the Argument Stack, an A-STACK error occurs.

Example:
10 FOR I%= 0 TO 20
20 PUSH INFO(I%)
30 ST@ 6A00H + I%*6 + 5
40 NEXT

STOP
Halt program execution, print out a STOP message, and output the current line number (unless
the -l command line option was specified). If the -xaddr command line option was not specified,
your program loops forever. Otherwise, the -xaddr command line option specifies where to
continue execution. When a program ends, all BASIC interrupts are disabled.

Example:
10 PRINT "At any time, press 'Q' to quit."
20 GOSUB 1000 ; collect data
25 IF GET=ASC(Q) THEN STOP

Copyright A 1989-1995 Binary Technology, Inc. 39 Version 5.0

30 GOSUB 2000 ; process data
35 IF GET=ASC(Q) THEN STOP
40 GOSUB 3000 ; output data
45 IF GET=ASC(Q) THEN STOP
50 GOTO 20

STRING expr1, expr2
The STRING command allocates or reallocates storage space for static strings. The second
expression is the number of characters per string, while the first expression is the total amount of
string space to be allocated. Each string is one byte larger than expr2 since it requires a
terminating character, CR, to mark the end of the string. One extra byte is required to keep track
of the number of strings. (expr1-1)/(expr2+1) rounded down, is the total number of strings
allowed. The maximum number of strings is 254 and the lowest numbered string is $(0). Each
time the STRING command is executed, a CLEAR is performed. This is for compatability with
MCS BASIC-52. Additionally, the CLEAR statement does not de-allocate the STRING space.
Only the command

STRING 0,0

will do this. The value of expr1 must not exceed free external RAM space available otherwise a
MEMORY ALLOCATION error occurs.

Example:
10 STRING 405, 100 ; 4 strings of 100 bytes each
20 $(0)= "Summary Report of Operations"
30 $(1)= "================================="
40 $(2)= "Report of Operations by Device"
50 $(3)= "========================"
60 PRINT $(0)
70 PRINT $(1)
80 GOSUB 1000 ; output report
90 PRINT $(1), CHR(12),
100 PRINT $(2)
110 PRINT $(3)
120 GOSUB 2000 ; output report
130 PRINT $(3)

TRACE0
The TRACE0 statement disables line number tracing started by the TRACE1 statement. After
TRACE0, line numbers will no longer appear for each BASIC line (or statement).

Example:
10 PRINT "Test program"
20 PRINT "0. Exit"
30 PRINT "1. Begin tracing"
40 PRINT "2. Stop tracing"
50 INPUT "Choice? ", A%
60 IF A%=0 THEN END
70 IF A%=1 THEN TRACE1
80 IF A%=2 THEN TRACE0
90 GOTO 50

Copyright A 1989-1995 Binary Technology, Inc. 40 Version 5.0

TRACE1
The TRACE1 statement enables line number tracing for program debugging: As the program
execution flows from one line to the next (by normal progression or by GOTO, NEXT, etc.), the
new line number will appear. The line number is printed inside of square brackets, [], before
executing your code on that line. If the -g command line option is specified, then the line number
and statement number displays. It appears after that statement is executed (e.g., [200-1] is
displayed after the first statement on line 200 has been executed). The TRACE1 statement is
disabled if the -l command line option is specified.

The TRACE1 statement is extremely useful to help debug BASIC programs. It lets you see what
the program is doing step-by-step. If your program crashes or executes the wrong way, TRACE1
helps show you where the problem lies.

See TRACE0 for example.

UI0
The UI0 statement changes the console input routines to the defaults, turning off the user-defined
console input routines.

See UI1 for example.

UI1
The UI1 statement changes the console input routines to the user-provided assembly routines.
The "get character" routine will be CALLed at 4033H (or wherever the -caddr command line
option specifies) and the character is expected to be returned in the accumulator. The "console
status check" routine is CALLed at 4036H and must set the Carry flag high when a character is
waiting. If not, it must be cleared. The user provided Assembly routine must use RB3 and must
return the default bank to RB0 before RETurning to the main program.

This statement sets bit 1EH and the UI0 command clears it. Without the UI1 statement, BXC-51
does not generate the code required to allow user console input.

Example:
10 buffer%= 8000H ; location of input buffer
20 UI1: INPUT "" CMD$: UI0 ; get console input
30 IF CMD$="" THEN 100
40 GOSUB 1000 ; process the command
50 GOTO 20 ; get next command
100 UI0 ; done with console input
110 PRINT "Results:"
120 GOSUB 2000 ; output results
130 END
$ASM
HERE EQU $
 ORG 4033H ; create console input handling
 JMP XX_GETCHAR
 ORG 4036H ; console status check
 SET C ; always ready
 RET

Copyright A 1989-1995 Binary Technology, Inc. 41 Version 5.0

XX_GETCHAR:
 MOV DPTR,#IV_BUFFER
 CALL LDPTRI ; DPTR = BUFFER%
 MOVX A,@DPTR ; get character
 MOV R0,A ; remember it
 INC DPTR ; update pointer
 MOV R1,DPL
 MOV R3,DPH
 MOV DPTR,#IV_BUFFER
 CALL IPUTVAR
 MOV A,R0 ; recover character
 RET
 ORG HERE
$BASIC

UNTIL TF_expr
The UNTIL statement is the second part of two statements that form a DO loop. The body of the
loop contains BASIC statements between the DO and UNTIL pair. When this statement is
executed, the true/false expression is evaluated. If it is false (0), program execution will resume
following the matching DO statement. If the expression is true (non 0), program execution will
resume after the UNTIL statement. Either way, the loop is executed at least once.

Example:
10 PRINT "Press any character"
20 TIME=0
30 CLOCK1
30 DO
40 UNTIL GET<>0
50 CLOCK0
60 PRINT TIME,"seconds elapsed before you pressed the key"

UO0
The UO0 statement changes the console output routines to the defaults, turning off the
user-defined console output routines. After UO0, PRINT statements resume outputting to the
serial port.

See UO1 for example.

UO1
The UO1 statement changes the console output routine to the user-provided assembly routine.
The print character routine will be CALLed at 4030H (or wherever the -caddr command line
option specifies) with the character in the R5 of RB0. The user provided Assembly routine must
only use RB3 and must return the default bank to RB0 before RETurning to the main program.
Also, it must restore any modified registers.

This statement sets bit 1CH and the UO0 command clears it. Without the UO0 statement,
BXC-51 ignores user console output.

Example:
10 buffer%= 8000H ; location of character buffer

Copyright A 1989-1995 Binary Technology, Inc. 42 Version 5.0

20 UO1 ; enable console output
30 PRINT "Hello, World!" ; store message starting at 8000H
40 END
$ASM
HERE EQU $
 ORG 4030H ; create console output handling
 PUSH DPL ; save DPTR
 PUSH DPH
 MOV DPTR,#IV_BUFFER
 CALL LDPTRI ; DPTR = BUFFER%
 MOVX @DPTR,A ; save character
 INC DPTR ; update pointer
 MOV R1,DPL
 MOV R3,DPH
 MOV DPTR,#IV_BUFFER
 CALL IPUTVAR
 POP DPH ; restore DPTR
 POP DPL
 RET
 ORG HERE
$BASIC

WHILE TF_expr
The WHILE statement is the second part of two statements that form a DO loop. The body of the
loop contains BASIC statements between the DO and WHILE pair. When this statement is
executed, the true/false expression is evaluated. If true (non 0), program execution resumes
following the matching DO statement. If false (0), program execution resumes after the WHILE
statement. Either way, the loop is executed at least once.

Example:
10 PRINT "You must press SPACE four times to exit"
20 COUNT= 0
30 DO
40 IF GET=ASC() THEN COUNT= COUNT+1
50 WHILE COUNT<4

Copyright A 1989-1995 Binary Technology, Inc. 43 Version 5.0

6. BASIC Functions

BXC-51 supports all MCS BASIC-52 functions. The following is a summary list of all these
functions, plus the additional ones with check marks featured only in BXC-51.

ABS(x) Return the absolute value of x
ASC(c) Return the ASCII code for character c
ASC(s) Return the ASCII code at beginning of string s
ASC($(n),x) Return the ASCII code for a character in string n
ATN(x) Return the arctangent of x
CBY(x) Return byte value from program memory (ROM)
CHR$(c) Return string of ASCII code c
COS(x) Return the cosine of x
DBY(x) Return/Set contents of internal memory
EXP(x) Return the value of e raised to the x
HIGH(x) Return high byte value of x
INT(x) Return integer part of x
LEFT$(s,n) Return left most n characters of string
LEN(s) Return length of string s
LOG(x) Return natural logarithm of x
LOW(x) Return low byte value of x
MID$(s,n,m) Return range of characters in middle of string s
NOT(x) Return the logical NOT of x (1's complement)
RIGHT$(s,n) Return rightmost characters of string s
SGN(x) Return sign of x
SIN(x) Return sine of x
STR$(n) Convert a number n to a dynamic string
SQR(x) Return square root of x
TAN(x) Return tangent of x
VAL(s) Convert a string to a number
XBY(x) Return/Set contents of external memory (RAM)

These functions take different data type expressions as input. The following explains the syntax:

expr A floating point, integer, or byte expression
character A single character (letter, number, punctuation, etc.)
string A static string variable
strexpr A dynamic string expression

ABS(expr)
Return the absolute value of the expression in parenthesis. This function may be used in a floating
point or integer expression.

Example:
10 INPUT "Enter any number: ", N
20 PRINT "Square root:", SQR(ABS(N)),

Copyright A 1989-1995 Binary Technology, Inc. 44 Version 5.0

30 IF N<0 THEN PRINT "i" ELSE PRINT

ASC(character)
Return the ASCII character code for the character in parenthesis. For example, ASC(A) is 65,
ASC(:) is 58. Note: MCS BASIC-52 returns a different value than BXC-51 for ASC(*),
ASC(+), ASC(-), and ASC(/) because MCS BASIC-52 incorrectly returns the token code for the
symbols, not the ASCII code. This function may be used in a floating point or integer expression.

Example:
10 PRINT "Press X to Exit"
20 PRINT "Press C to Collect data"
30 PRINT "Press O to Output data"
40 DO: A=GET: WHILE A=0
50 IF A=ASC(X) .OR. A=ASC(x) THEN END
60 IF A=ASC(C) .OR. A=ASC(c) THEN GOSUB 1000 ; collect
70 IF A=ASC(O) .OR. A=ASC(o) THEN GOSUB 2000 ; outout
80 GOTO 40

ASC(strexpr)
ASC(strexpr,expr)
Return the ASCII character code for the first (or exprth) character in of the dynamic string
expression. This function may be used in a floating point or integer expression.

Example:
10 INPUT "Message: ", MESG$
20 PRINT "Codes: ",
30 FOR I%= 1 TO LEN(MESG$)
40 PRINT ASC(MID$(MESG$, I%, 1)),
50 NEXT
60 PRINT

ASC(string,expr)
Return the ASCII character code for a character inside a static string. The expression determines
which character is returned. If the expression is 1, the first character of the static string is
returned; if it is 2, the second character is returned; etc. This function may be used in a floating
point or integer expression. This function is different than most because it can be used to change
the character in the string at the location specified (see LET on page 26).

Example:
10 STRING 102,100
20 INPUT "Message: ", $(0)
30 PRINT "Codes: ",
40 FOR I%= 1 TO 100
50 PRINT ASC($(0), I%),
60 IF ASC($(0), I%)=13 THEN I%=100 ; exit loop
60 NEXT
70 PRINT

Copyright A 1989-1995 Binary Technology, Inc. 45 Version 5.0

ATN(expr)
Return the arctangent, tan-1, of the expression. The value is returned in radians. This function may
only be used in a floating point expression.

Example:
10 PRINT "Inside the right triangle, measure the leg
lengths"
20 INPUT "Leg 1's length:", L1
30 INPUT "Leg 2's length:", L2
40 PRINT "Angle between leg 1 and hypotenuse:", ATN(L1/L2)
50 PRINT "Angle between leg 1 and hypotenuse:", ATN(L2/L1)

CBY(expr), CBY#(expr)
Return the byte value from program memory (ROM). The expression expr is the ROM address
that to read.

Example:
10 PRINT "This program really begins at",
20 PH0. CBY(ROMORG%+1)*256+CBY(ROMORG%+2)

CHR$(expr)
Convert the value of expr to a 1 character dynamic string for the ASCII value expr. Values
between 0 and 255 (including 13) are valid.

Note that using this function will corrupt any program in the BASIC-52 interpreter when using
the -2i command line option since the string buffer is located at 200H through 300H. To avoid
this, use the ASC()= command with static strings.

Example:
10 PRINT "Printable characters:"
20 FOR I%=32 TO 127 STEP 32
30 FOR J%=I% TO I%+31
40 PRINT CHR$(J%),
50 NEXT
60 PRINT
70 NEXT

COS(expr)
Return the cosine of the expression. The expression evaluated as radians. This function may only
be used in a floating point expression.

Example:
10 INPUT "Angle, in radians: ", A
20 INPUT "Radius of circle: ", R
30 PRINT "Given a circle at (0,0), the point is at ",
40 PRINT "(", R*COS(A), ",", R*SIN(A), ")"

DBY(expr), DBY#(expr)
Return/Set contents of internal memory. On an 8051/31, DS5000, and some derivative
microcontrollers, internal memory ranges from 0 to 127, or 0H to 7FH. This function is different

Copyright A 1989-1995 Binary Technology, Inc. 46 Version 5.0

than most because it can be used to get the internal memory value or set internal memory. This
function is bit addressable (followed by dot and bit position from 0 to 7) to return a specific bit. If
this function appears on the left side in an assignment statement, that internal memory location
will be altered (see the LET command on page 26). For example,

DBY(3EH)= 0A0H

will change the internal stack home position to begin at A0H when CLEARS is executed.

You may wish to use byte variables (see page) instead of using the DBY() because the name of
the byte variable may be more descriptive than a specific address such as 3EH.

Example:
10 DEFVAR STK0#@3EH
20 DBY(3EH)= 60H
30 PRINT "Stack now at", STK0#
40 STK0#= 50H
50 PRINT "Stack now at", STK0#

EXP(expr)
Return the value of e (2.7182818) raised to the power of the value of the expression. This
function may only be used in a floating point expression.

Example:
10 INPUT "Power of e: ", X
20 PRINT "e to that power is", EXP(X)

HIGH(expr)
Return the value of the high (or most significant) byte of an integer expression. This function is
useful in both floating point and integer expressions. As a floating point function, a valid value is
still returned for the range 32768 through 65535 which directly maps to the high byte integer
values for -32768 through -1. For example, the integer number 770 has an upper byte of 3 and
lower byte of 2 because 3*256+2=770; HIGH(770) yields 3.

Example:
10 A%= 34E1H
20 XBY(5000H)= HIGH(A%) ; 34H
30 XBY(5001H)= LOW(A%) ; E1H

INT(expr)
Return integer part of the floating point expression. This neither rounds down nor rounds up, it
just truncates the decimal part. For example, INT(4.3) returns 4 while INT(-5.2) returns -5.

This function is required to convert a floating point expression to an integer value inside integer
expressions. This function may be used in a floating point or integer expression.

Example:
10 INPUT "Radians: ", R
20 DEGREES%= INT(180*R/PI)

Copyright A 1989-1995 Binary Technology, Inc. 47 Version 5.0

30 PRINT "Degrees: ", DEGREES%

LEFT$(strexpr,expr)
Return the leftmost characters of a dynamic string expression, strexpr. strexpr is any valid string
expression and expr is any integer greater than or equal to 0. Note, if expr is larger than the
length of the string expression, the whole string expression is returned. A negative length causes
a BAD ARGUMENT error.

Note that use of this function will corrupt any program in the BASIC-52 interpreter when using
the -2i command line option since the string buffer is located at 200H through 300H.

Example:
10 DIM A(20)
20 GOSUB 2000 ; collect data into array A()
30 PRINT "Bar chart of data" : PRINT
40 DOTS$="********************" ; 20
50 FOR I%=1 TO 20
60 PRINT I%, TAB(5), "|", LEFT$(DOTS$, A(I%))
70 NEXT

LEN(strexpr)
Return the length (in characters) of a dynamic string expression, strexpr. This value will always be
from 0 to 255.

Example:
10 WORD$= "honey"
20 PRINT "Strip the first and last letter of ", WORD$, ": ",
30 PRINT MID$(WORD$, 2, LEN(WORD$)-2)

LOG(expr)
Return the natural logarithm of the expression. Remember that logarithms are only valid for
non-zero, positive numbers. LOG(0) or the LOG() of a negative number will cause a BAD
ARGUMENT error. This function can only be used in a floating point expression.

Example:
10 INPUT "Enter a number: ", A
20 PRINT "Natural log:", LOG(A)
30 PRINT "Log base 10:", LOG(A)/LOG(10)

LOW(expr)
Return the value of the low (or least significant) byte of an integer expression. The integer
number 767 has an upper byte of 2 and lower byte of 255 because 2*256+255=767; LOW(767)
yields 255. This function may be used in both floating point and integer expressions.

Example:
10 A%= 02FFH
20 XBY(5000H)= HIGH(A%) ; 02H
30 XBY(5001H)= LOW(A%) ; FFH

Copyright A 1989-1995 Binary Technology, Inc. 48 Version 5.0

MID$(strexpr,expr1,expr2)
Return a range of characters in the middle of a dynamic string expression strexpr, starting at
character position expr1 for a total length of expr2 characters. The start of the range is 1 or
higher. If the starting point is beyond the number of characters actually in the string, an empty
string is returned. The length may be from 0 to 255. If start position plus length is larger than the
length of the string expression, then the whole string from start position onward is returned.
Specify a length of 255 to get the whole string from the starting position onward. A negative
start position or length causes a BAD ARGUMENT error.

Note that use of this function will corrupt any program in the BASIC-52 interpreter when using
the -2i command line option since the string buffer is located at 200H through 300H.

Example:
10 MON$="JanFebMarAprMayJunJulAugSepOctNovDec"
20 INPUT "Enter date (MM/DD/YY): ", MONTH, DAY, YEAR
30 PRINT MID$(MON$, MONTH*3+1, 3), DAY, ", ", YEAR

NOT(expr)
Return the logical NOT of the expression (1's complement). Any decimal part of a floating point
number is ignored. This function may be used in a floating point or integer expression.

Example:
10 LED%= XBY(0E000H) ; get the LED status
20 XBY(0E000H)= NOT(LED%) ; invert the LEDs
30 TIME=0: CLOCK1
40 DO : WHILE TIME<.5 ; wait .5 seconds
50 XBY(0E000H)= NOT(LED%) ; revert the LEDs to previous

RIGHT$(strexpr,expr)
Return the rightmost characters of a string expression, strexpr. strexpr is any valid dynamic string
expression and the length, expr, is any integer greater than or equal to 0. If expr is larger than the
length of the string expression, the whole string is returned. A negative length causes a BAD
ARGUMENT error.

Note that use of this function will corrupt any program in the BASIC-52 interpreter when using
the -2i command line option since the string buffer is located at 200H through 300H.

Example:
10 PRINT "Each part name should begin with three letters"
20 PRINT "and end with 4 numbers, e.g. ABC-1234"
30 INPUT "Part name: ", PART$
40 PRINT "Part type: ", LEFT$(PART$, 3)
50 PRINT "Part number: ", RIGHT$(PART$, 4)

SGN(expr)
Return the sign of the expression. The return values are -1, 0, or 1 if the expression is negative,
zero, or, positive, respectively.

Example:

Copyright A 1989-1995 Binary Technology, Inc. 49 Version 5.0

10 INPUT "A negative or positive number: ", A
20 PRINT "Pushing it 10 further from 0: ", A+SGN(A)*10

SIN(expr)
Return the sine of the expression. The expression evaluated as radians. This function can only be
used in a floating point expression.

Example:
10 PRINT "Bar chart of sine" : PRINT
20 DOTS$="********************" ; 20
30 FOR ANGLE=0 TO PI STEP PI/19
40 PRINT USING(#.###), ANGLE, TAB(8),
50 PRINT "|", LEFT$(DOTS$, SIN(ANGLE))
60 NEXT

SQR(expr)
Return the square root of the expression. If the expression is negative, a BAD ARGUMENT
error will be reported. This function can only be used in a floating point expression, however
INT(SQR(expr)) can be used in an integer expression.

Example:
10 INPUT "Two legs of a right triangle: ", L1, L2
20 PRINT "Hypotenuse:", SQR(L1*L1+L2*L2)

STR$(expr)
Convert the numeric value expr into a string. The current output format set by the last USING
statement determines the format of the string returned. The returned string will not have any
leading or trailing spaces in it.

Note that use of this function will corrupt any program in the BASIC-52 interpreter when using
the -2i command line option since the string buffer is located at 200H through 300H.

Example:
10 PRINT "Enter sample height: ", H
20 MESG$= "Height("+STR$(H)+")"
30 PRINT MESG$; prints Height(3) if H=3

TAN(expr)
Return the tangent of the expression. The expression evaulated as radians. This function will

report a DIVIDE BY ZERO if the expression evaluates to π/2 or -π/2. This function can only be
used in a floating point expression.

Example:
10 INPUT "Enter angle: ", A
20 PRINT "Slope of line is: ", TAN(A)

Copyright A 1989-1995 Binary Technology, Inc. 50 Version 5.0

VAL(strexpr)
Convert a string expression to a numeric value. The beginning of the string must have a numeric
value otherwise 0 is returned. All non-numeric text is ignored from the first non-numeric character
onward. Any number following non-numeric text is ignored.

Example:
10 PRINT "Follow time with units of time using"
20 PRINT "s for seconds or m for minutes, e.g. 10s"
30 INPUT "Time to wait: ", DELAY$
40 DELAY=VAL(DELAY$)
50 IF RIGHT$(DELAY$, 1)="m" THEN DELAY= DELAY*60
60 TIME=0: CLOCK1
70 DO : WHILE TIME<=DELAY

XBY(expr), XBY#(expr)
Return/Set contents of external memory (RAM). expr is the address of the external memory
location. This function is different than most because it can be used to get the external memory
value or set external memory. If this function appears on the left side of an assignment, the
external memory location will be altered (see the LET command on page 26).

Example:
10 OT%= XBY(126H)*256+XBY(127H)
20 IF OT%=0 THEN
30 PRINT "ONTIME is not setup"
40 ELSE
50 PH0. "ONTIME is setup at", OT%
60 ENDIF

Copyright A 1989-1995 Binary Technology, Inc. 51 Version 5.0

7. BASIC Special Variables

BXC-51 supports all MCS BASIC-52 special variables. The following is a summary list of all the
special variables, plus the additional ones with check marks featured only in BXC-51.

ERRLINE% Line number of last error
ERRVALUE% Error code of last error
FALSE Return logical false, 0
FREE Return the amount of RAM left
GET Return current character on console
IE Return/Set value of interrupt enable register
IP Return/Set value of interrupt priority register
LEN Return length of program
MCON# Return/set value of memory control reg.
MTOP Return/Set the top of memory
PCON Return/Set the power control register

PI Return the value of π
PORT0# Return/Set value of P0 I/O port
PORT1 Return/Set value of P1 I/O port
PORT2# Return/Set value of P2 I/O port
PORT3# Return/Set value of P3 I/O port
RAMORG Return starting location of RAM
RCAP2 Return/Set value for timer 2's reload/capture registers
RND Return a random number
ROMORG Return starting location of program (ROM)
T2CON Return/Set value of timer/counter 2 control register
TCON Return/Set value of timer/counter control register
TIME Return/Set value of real-time clock
TIMER0 Return/Set value of timer/counter 0
TIMER1 Return/Set value of timer/counter 1
TIMER2 Return/Set value of timer/counter 2
TMOD Return/Set timer/counter mode control register
TRUE Return logical true, -1
XTAL Return/Set value of system clock speed, in Hz

Most of these variables may be used in floating point, integer, and byte expressions. Most can
have expressions assigned to them. Some of these variables require the integer or byte variable
syntax of a trailing % or #. Be careful to use it. For variable names that optionally appear as
integer or byte variables, this is indicated below.

ERRLINE%
Return/set the value of line number of the last error. This information is most helpful when
writing an ONERR subroutine which is handling an error. Initially, this value is 0.

Example:

Copyright A 1989-1995 Binary Technology, Inc. 52 Version 5.0

10 ONERR 1000
20 READ A ; without any DATA, this is an error
30 PRINT A
40 END
1000 PRINT "Error on line", ERRLINE%
1010 PRINT "Beginning clean-up procedures"
1020 GOSUB 4000 ; clean up
1030 END

ERRVALUE%
Return the value of the last error that occurred. Initially, this value is 0. After an error, the
possible value of ERRVALUE% is:

0 No error
10 Divide by zero
20 Arithmetic overflow
30 Arithmetic underflow
40 Bad argument
250 Non-arithmetic error

Example:
10 ONERR 1000
20 PRINT A/0 ; /0 is an error
30 END
1000 PRINT "Error", ERRVALUE%, "on line", ERRLINE%
1010 PRINT "Beginning clean-up procedures"
1020 GOSUB 4000 ; clean up
1030 END

FALSE, FALSE%
Return the value of logical false, which is 0. This special variable is useful to make code more
readable (e.g., DONE=FALSE). FALSE is a constant; a value cannot be assigned to it.

Example:
10 DONE%= FALSE: CLOCK1: TIME=0
20 DO
30 INPUT "Enter activity number (0=Exit): ", AN
40 IF AN=0 THEN DONE%= TRUE
50 IF AN<0 THEN GOSUB 2000
60 IF AN>0 THEN GOSUB 3000
70 PRINT "Time", TIME
80 UNTIL DONE%

FREE, FREE%
Return the amount of RAM extra left for use by program. This value will only change when an
array is allocated, when the STRING statement is executed or when MTOP changes (see page
55). In MCS BASIC-52, FREE decreases every time a new variable is referenced. In BXC-51, all
the variables are allocated at compile-time and cannot be deallocated.

Copyright A 1989-1995 Binary Technology, Inc. 53 Version 5.0

Unlike the MCS BASIC-52 interpreter, FREE does not equal MTOP - LEN - 511 because the
program space, LEN, is not in the same block of memory as RAM variables. A value cannot be
assigned to FREE.

When using the integer variation, FREE%, the value may be negative if the amount of free
memory is greater than 32K. The real value of free memory is FREE%+65536.

Example:
10 REM Allocate as many 100 byte strings will fit in 1/4 of
11 REM the free memory
20 STRING FREE%/4, 100
30 DEFVAR VARTOP%@104H
30 NS%= XBY(VARTOP%)
40 PRINT NS%, "strings allocated"

GET, GET#
Return the current pressed character on console. If no character has been received, GET returns
0. If a character is pressed and waiting on the console, the ASCII value of that character will be
returned. After using GET, the character on the console is cleared. When a second character
arrives before the first one is read, the second character is discarded. See the SBUFFER
statement on page 38 to allow GET to buffer characters so none are lost. A value cannot be
assigned to GET.

Example:
10 PRINT "Press Q to quit"
20 DO
30 KEY%= GET
40 UNTIL KEY%=ASC(Q) .OR. KEY%=ASC(q)
50 PRINT "All done"

IE, IE#
Return/Set value of Interrupt Enable register. If this special variable appears on the left side of an
assignment statement, IE is altered. Otherwise, IE's present value is returned. The only other
BASIC statements that alter IE are: CLEAR, CLEARI, CLOCK0, CLOCK1, and ONEX1. See
page 113 for a summary of this Special Function Register.

Example:
10 PRINT "Interrupt enable:"
20 IF IE#.0 THEN PRINT "EX0 enabled"
30 IF IE#.1 THEN PRINT "Timer 0 enabled"
40 IF IE#.2 THEN PRINT "EX1 enabled"
50 IF IE#.3 THEN PRINT "Timer 1 enabled"
60 IF IE#.4 THEN PRINT "Serial enabled"
70 IF IE#.0 THEN PRINT "Timer 2 enabled"

IP, IP#
Return/Set value of interrupt priority register. If used alone, this special variable returns the
current settings of the interrupt priority register. If used in an assignment statement, it alters the
register. See page 113 for a summary of this special function register.

Copyright A 1989-1995 Binary Technology, Inc. 54 Version 5.0

Example:
10 PRINT "Interrupt priority:"
20 IF IE#.0 THEN PRINT "EX0 high"
30 IF IE#.1 THEN PRINT "Timer 0 high"
40 IF IE#.2 THEN PRINT "EX1 high"
50 IF IE#.3 THEN PRINT "Timer 1 high"
60 IF IE#.4 THEN PRINT "Serial high"
70 IF IE#.0 THEN PRINT "Timer 2 high"

LEN, LEN%
Return the length of your program. This value is fixed because your program is compiled. A
value cannot be assigne to LEN.

If your program is larger than 32K, then LEN% will be negative; the real length is LEN%+65536.

Example:
10 PRINT "This program is", LEN, "bytes long."
20 PRINT "Starting at", ROMORG%
30 PRINT "Ending at", ROMORG%+LEN-1

MCON#
Return the Memory Control register. This variable only has meaning on a DS5000 CPU. A new
value cannot be assigned to MCON#, however, it can be altered by using this Assembly code:

MOV C7,#0AAH
MOV C7,#055H
MOV BV_MCON,#newvalue

Example:
10 PRINT "This DS5000's configuration:"
20 IF MCON#.3 THEN SIZE%=8000H ELSE SIZE%=2000H
30 SPLIT%= 800H*(MCON# .SHR. 4)
40 IF (MCON# .SHR. 4)=15 THEN SPLIT%=8000H
50 PH0. "ROM: ", 0, "to", SPLIT%-1
60 PH0. "RAM: ", SPLIT%, "to", SIZE%-1

MTOP, MTOP%
Return/Set the top of external RAM memory. The special variable contains the address of the
highest addressable RAM location usable by BASIC when your program starts. If the -uaddr

command line option is specified, MTOP is initially set to that address (unless the -2i or -sub

command line options are present in which case MTOP is not set at all at program startup.) If
you wish to alter this value, assign it a new value. If the -uaddr command line option was
specified, MTOP is initially set to it.

If your program needs to alter MTOP, it should do so at the beginning. The value of MTOP is
used to determine where dynamic strings may be stored (just below MTOP).

If this value is larger than 7FFFH then MTOP% will be negative; the real memory top is
MTOP%+65536.

Copyright A 1989-1995 Binary Technology, Inc. 55 Version 5.0

MTOP is used to determine where to place static strings (seee STRING command on page 40)
and where to store dynamic strings.

Example:
10 REM Leave 8000H and above for other programs
20 IF MTOP>=8000H THEN MTOP=7FFFH

PCON, PCON#
Return/Set the power control register. See page 112 for a summary of this special function
register.

Example:
10 PRINT "Power Control register:"
20 PRINT "Value: ", PCON#
30 IF PCON#.7 THEN PRINT "Baud rate doubled"

PI
Return the value of π, 3.1415926. This special variable can only be used in a floating point
expression. PI is a constant. A new value cannot be assigned to it.

Example:
10 INPUT "How many points on a circle? ", PTS%
20 INPUT "Radius of circle? ", R
30 FOR I= 0 TO 2*PI STEP 2*PI/(PTS%-1)
40 PRINT USING(#.###),I, "= (", R*COS(I), ",", R*SIN(I), ")"
50 NEXT

PORT0#
Return/Set value of P0 I/O port. This variable provides dubious value on boards designed with
external RAM because PORT0 is used for the address and data bus. However, on the DS5000
and derivative microcontrollers which use on-chip 'external' RAM, this variable provides access to
Port 0. When assigning values to a particular bit of the port, remember that bit assignments read
the port, change the bit, then write the port. When assigning values to a particular bit of the port,
remember that bit assignments read the port, change the bit, then write the port.

Example:
10 PRINT "Port 0:"
20 PRINT "PORT0.0 =", PORT0#.0
30 PRINT "PORT0.1 =", PORT0#.1
40 PRINT "PORT0.2 =", PORT0#.2
50 PRINT "PORT0.3 =", PORT0#.3
60 PRINT "PORT0.4 =", PORT0#.4
70 PRINT "PORT0.5 =", PORT0#.5
80 PRINT "PORT0.6 =", PORT0#.6
90 PRINT "PORT0.7 =", PORT0#.7

PORT1, PORT1#
Return/Set value of P1 I/O port.

Example:

Copyright A 1989-1995 Binary Technology, Inc. 56 Version 5.0

10 PRINT "Port 1:"
20 PRINT "PORT1.0/T2 =", PORT1#.0
30 PRINT "PORT1.1/T2EX =", PORT1#.1
40 PRINT "PORT1.2 =", PORT1#.2
50 PRINT "PORT1.3 =", PORT1#.3
60 PRINT "PORT1.4 =", PORT1#.4
70 PRINT "PORT1.5 =", PORT1#.5
80 PRINT "PORT1.6 =", PORT1#.6
90 PRINT "PORT1.7 =", PORT1#.7

PORT2#
Return/Set value of P2 I/O port. This port is used for addressing external RAM unless the -5
command line option is specified (for DS5000 CPU). This variable provides dubious value on
boards designed with external RAM because PORT0 is used for the address bus. However, on
the DS5000 and derivative microcontrollers which use on -chip 'external' RAM, this variable
provides access to Port 2. When assigning values to a particular bit of the port, remember that bit
assignments read the port, change the bit, then write the port.

Example:
10 PRINT "Port 2:"
20 PRINT "PORT2.0 =", PORT2#.0
30 PRINT "PORT2.1 =", PORT2#.1
40 PRINT "PORT2.2 =", PORT2#.2
50 PRINT "PORT2.3 =", PORT2#.3
60 PRINT "PORT2.4 =", PORT2#.4
70 PRINT "PORT2.5 =", PORT2#.5
80 PRINT "PORT2.6 =", PORT2#.6
90 PRINT "PORT2.7 =", PORT2#.7

PORT3#
Return/Set value of P3 I/O port.

Example:
10 PRINT "Port 3:"
20 PRINT "PORT3.0/RXD =", PORT3#.0
30 PRINT "PORT3.1/TXD =", PORT3#.1
40 PRINT "PORT3.2/INT0 =", PORT3#.2
50 PRINT "PORT3.3/INT1 =", PORT3#.3
60 PRINT "PORT3.4/T0 =", PORT3#.4
70 PRINT "PORT3.5/T1 =", PORT3#.5
80 PRINT "PORT3.6/WR =", PORT3#.6
90 PRINT "PORT3.7/RD =", PORT3#.7

RAMORG, RAMORG%
Return starting location of the external RAM system variables. The BASIC program variables
start at RAMORG+200H. If the -vaddr compiler option is specified, RAMORG will be that
address. Otherwise, RAMORG will be 0.

If this value is larger than 7FFFH, RAMORG% will be negative. The real starting location is
RAMORG%+65536. RAMORG is fixed at compile-time; a value cannot be assigned to it.

Copyright A 1989-1995 Binary Technology, Inc. 57 Version 5.0

Example:
10 PRINT "RAM usage:"
20 PH0. "BASIC system RAM:", RAMORG%, "to", RAMORG%+200H
30 PH0. "Top of BASIC RAM:", MTOP
40 PH0. "Total BASIC RAM:", MTOP-RAMORG%
50 PH0. "Total RAM free:", FREE

RCAP2, RCAP2%
Return/Set value for Timer 2's Reload/Capture register. This register is responsible for generating
the baud rate of the serial port on the 8052/8032 microcontrollers. Therefore, altering this
variable may change the baud rate. This register is only available on the 8052/32.

Note that RCAP2% refers to the RCAP2 Special Function Register, not an external RAM integer.

Example:
10 PRINT "RCAP2 register:", RCAP2

RND
Return a random number between 0.0 and 1.0. The random number is generated as an integer
from 0 to 65535 and it is divided by 65535 to reduce it to the 0 to 1 range. This special variable
can only be used in a floating point expression however INT(RND*MAX) may be used in integer
expressions. Values cannot be assigned to RND.

Example:
10 REM Wait for 1 to 10 seconds
20 ONTIME INT(RND*9.99999)+1, 1000
30 TIME=0: CLOCK1
40 IDLE
50 END
1000 CLOCK0
1010 PRINT "Random time waited:", TIME, "seconds"

ROMORG, ROMORG%
Return the starting location of your program (ROM). If the -paddr compiler option was
specified, ROMORG is that address; otherwise, ROMORG is 0. ROMORG is fixed at
compile-time; a value cannot be assigned to it.

If this value is larger than 7FFFH, ROMORG% will be negative. The real starting location is
ROMORG%+65536.

Example:
10 PH0. "This program starts at", ROMORG,
20 PH0. "in memory and ends at", ROMORG+LEN-1

T2CON, T2CON#
Return/Set value of Timer/Counter 2 control register. This special variable controls whether the
serial port baud rate timer is controlled by Timer 1 or Timer 2, which should not be changed. This
register is available only on the 8052/32 microcontroller. See page 113 for a summary of this
special function register.

Copyright A 1989-1995 Binary Technology, Inc. 58 Version 5.0

Example:
10 PRINT "T2CON: ", T2CON
20 PRINT "T2CON.0/CPRL2 =", T2CON#.0
30 PRINT "T2CON.1/CT2 =", T2CON#.1
40 PRINT "T2CON.2/TR2 =", T2CON#.2
50 PRINT "T2CON.3/EXEN2 =", T2CON#.3
60 PRINT "T2CON.4/TCLK =", T2CON#.4
70 PRINT "T2CON.5/RCLK =", T2CON#.5
80 PRINT "T2CON.6/EXF2 =", T2CON#.6
90 PRINT "T2CON.7/TF2 =", T2CON#.7

TCON, TCON#
Return/Set value of Timer/Counter Control register. This special variable is used to control
Timer 0, Timer 1, External Interrupt 0, and External Interrupt 1.

Timer 0 is used by the CLOCK0/CLOCK1 commands. On the 8051/31, DS5000, and derivative
microcontrollers, Timer 0 also controls the PGM and PWM commands. Because of this, care
must be taken not to use the time clock simultaneously with the PGM or PWM commands.
Timer 1 is used for the baud rate on the 8051/31, DS5000, and derivative microcontrollers. On
the 8052 microcontroller, Timer 1 is used by the PGM and PWM commands.

See page 113 for a summary of this special function register.

Example:
10 PRINT "Timer 0:"
20 IF TCON#.4 THEN PRINT "Timer 0 is running."
30 IF TCON#.5 THEN PRINT "Timer 0 interupt pending."
40 PRINT "Timer 1:"
50 IF TCON#.6 THEN PRINT "Timer 1 is running."
60 IF TCON#.7 THEN PRINT "Timer 1 interupt pending."
70 PRINT "External Interrupt 0:"
80 IF TCON#.0 THEN PRINT "Falling edge triggered"
90 IF TCON#.0=0 THEN PRINT "Low level triggered"
100 IF TCON#.1 THEN PRINT "Interupt pending."
110 PRINT "External Interrupt 1:"
120 IF TCON#.2 THEN PRINT "Falling edge triggered"
130 IF TCON#.2=0 THEN PRINT "Low level triggered"
140 IF TCON#.3 THEN PRINT "Interupt pending."

TIME
Return/Set value of real-time clock in seconds. This special variable will change if a CLOCK1
statement has been executed and will stay constant following a CLOCK0 statement. This special
variable can only be used in a floating point expression, however INT(TIME) may be used in
integer and byte expressions. After the CLOCK1 statement, the TIME variable increases with the
passage of time. Before the CLOCK1 statement, it is customary to set TIME to 0 for timing.
You may set TIME to the number of seconds since midnight. However, TIME will not reset to 0
at the next midnight. Timing accuracy is roughly .025 seconds.

Example:
10 PRINT "Timing program routines"

Copyright A 1989-1995 Binary Technology, Inc. 59 Version 5.0

20 CLOCK1
30 TIME=0: GOSUB 1000 ; routine to be timed
40 A=TIME
50 PRINT "Routine 1000 took", A, "seconds"
60 TIME=0: GOSUB 2000 ; routine to be timed
70 A=TIME
50 PRINT "Routine 2000 took", A, "seconds"

TIMER0, TIMER0%
Return/Set value of Timer/Counter 0. This special variable is used to control updating the TIME
special variable after a CLOCK1 statement. On the 8051/31, DS5000, and derivative
microcontrollers, the PGM and PWM statements use Timer 0.

If this value is larger than 32767, TIMER0% will be negative; the real value is TIMER0%+65536.

Note that TIMER0% refers to the TIMER0 special function register, not an external RAM
integer.

Example:
10 PRINT "Timer 0:", TIMER0

TIMER1, TIMER1%
Return/Set value of timer/counter 1. This special variable is used to control the baud rate on an
8051/31 or DS5000. On the 8052/32, it is also used by the PGM, PRINT#, and PWM
statements. If this value is larger than 32767, TIMER1% will be negative; the real value is
TIMER1%+65536.

Note that TIMER1% refers to the TIMER1 Special Function Register, not an external RAM
integer.

Example:
10 PRINT "Timer 1:", TIMER1

TIMER2, TIMER2%
Return/Set value of Timer/Counter 2. This variable is not available on the 8051/31, DS5000, and
derivative microcontrollers. This special variable is used to control the baud rate on an 8052/32.

If this value is larger than 32767, TIMER2% will be negative; the real value is TIMER2%+65536.

Note that TIMER2% refers to the TIMER2 special function register, not an external RAM
integer.

Example:
10 PRINT "Timer 2:", TIMER2

TMOD, TMOD#
Return/Set Timer/Counter Mode Control register. It controls the modes of Timer 0 and Timer 1.
See page 113 for a summary of this special function register.

Copyright A 1989-1995 Binary Technology, Inc. 60 Version 5.0

Example:
10 PRINT "Timer 0:"
20 IF TMOD#.2 THEN ? "Counter mode" ELSE ? "Timer mode"
30 PRINT "Mode: ", TMOD#.0+2*TMOD#.1
40 IF TMOD#.3 THEN PRINT "Gate enabled."
50 PRINT "Timer 1:"
60 IF TMOD#.6 THEN ? " Counter mode" ELSE ? "Timer mode"
70 PRINT "Mode: ", TMOD#.4+2*TMOD#.5
80 IF TMOD#.7 THEN PRINT "Gate enabled."

TRUE, TRUE%
Returns the value of logical true which is -1 or FFFFH. This special variable is useful to make
code more readable (e.g., IF CONDITION=TRUE THEN 500). TRUE is a constant; a value
may not be assigned to it.

Example:
10 KEEP_GOING%= TRUE
20 DO
30 GOSUB 1000 ; determine fluid level
40 IF LEVEL<.1 THEN KEEP_GOING%= FALSE
50 WHILE KEEP_GOING%

XTAL
Return/Set value of system clock speed in Hz. The default value is 11,059,200 Hz or 11.0592
MHz. Altering this variable will not alter the baud rate unless RCAP2 (or TIMER1) is also
changed. The baud rate is determined by

BAUD = XTAL

32×(65536−RCAP2)

for the 8052/32 microcontroller, and

BAUD = XTAL

192×(256−INT(TIMER1/256))

for the 8051/31, DS5000, and derivative microcontrollers. This special variable can only be used
in floating point expressions.

Copyright A 1989-1995 Binary Technology, Inc. 61 Version 5.0

8. Getting Started

This section assumes you are familiar with BASIC-52 programming, but unfamiliar with
compiling using BXC-51. This section will demonstrate how to use the compiler to compile and
run your BASIC program. After performing the steps outlined in this section, you should explore
other parts of this manual, depending upon your needs.

Creating Source Code

Before you can use BXC-51, you must have BASIC source code. There are two ways to do so,
by using the interpreter or using an editor. The result of either way must be that your created
source must be in a file on your PC. By convention, BASIC source code files use the .BAS file
extension.

Many engineers prefer to develop their program in the BASIC-52 interpreter before compiling.
This has the advantage that you can test your program and modify it quickly and easily. This has
the disadvantage that you cannot take advantage of the BXC-51 extensions to BASIC. Once you
have developed the code to your satisfaction, upload the source to a file on your PC. The BASIC
Toolkit (BTK) product from Binary Technology, Inc. is a useful tool for this stage of
development.

Many engineers also prefer to develop their program using a text editor on the PC, such as
Infinitor (contact Binary Technology, Inc. Use the text editor to write your BASIC source code.
Quit the editor and run the compiler. If the compiler generates any errors, re-edit your BASIC
source code to correct the errors. This is a very typical cycle of development. The BXC-51 IDE
product (available from Binary Technology, Inc. is an integrated development environment which
allows you to edit your BASIC source, compile it, download it, and run it all without exiting to
DOS.

Regardless of your development environment, you must create a BASIC source code file on your
PC.

The Default Compiler Options

Before running BXC51.EXE, you must consider how you are using memory on your target
system, what baud to use for the serial port, which microcontroller, and other issues. By default,
BXC-51 assumes the following options when no command line options are present:

a. It starts in ROM (code memory) at 0H. If you need to locate it somewhere else in
ROM, use -paddr command line option to change it. For example, if your target
system has the BASIC-52 interpreter present, the lowest available ROM address is
2000H.

b. External RAM is assumed to start at 0H. If you do not have RAM configured there or
you desire to have it configured elsewhere, use the -vaddr command line option to
change it.

Copyright A 1989-1995 Binary Technology, Inc. 62 Version 5.0

c. All contiguous RAM bytes will be cleared from 0 to E000H. If you used -vaddr, then
all contiguous RAM bytes will be cleared from that address to E000H. To specify
an upper bounds on memory clearing and use of memory by your BXC-51
compiled program, use the -uaddr command line option to change it.

d. Set the baud rate by pressing the space bar when the program starts. This is normal
when using BASIC-52 interpreter, however you may specify a baud rate ahead of
time by using the -brate command line option to change it.

e. Your program assumes your target microcontroller is an 8051/31. For a 8052 target
microcontroller, use the -2 command line option. For a DS5000 target
microcontroller, use the -5 command line option. For a derivative microcontroller
target (such as the 8xC550 or 8xC552), use the -tcpu command line option.

f. If an error occurs, the BASIC source code line number will be displayed. Each line
number generates code. To hide the BASIC source code numbers, use -l
command line option to compile without them.

g. Only arithmetic errors can be trapped. To trap other errors such as NO DATA, use the
-e command line option and ONERR BASIC command.

h. When the program finishes, it will loop indefinitely. To exit to a specific ROM address
to run other programs, use the -xaddr command line option. This is handy for
jumping into monitor code, if you have a monitor on your board (such as M/DP
available from Binary Technology, Inc.) or restarting the program.

i. The compiled code assumes no interpreter code in ROM, so it generates a completely
standalone program. If you have the BASIC-52 interpreter present and enabled,
your program can use some of that code when you specify the -2i command line
option. This greatly reduced program code size. To create an Assembly
subroutine, use the -sub command line option.

A complete description of all available command line options appears on page 124.

Commonly Used Compiler Options

If you have not yet formed an opinion about which command line options are best for you, you
may wish to know what other engineers prefer to use.

Most engineers who communicate with their board via serial port use one baud rate all the time.
By specifying -brate on the command line, the baud rate is fixed and the program can start
running immediately without having to wait for the user to send a space for auto-baud detection.

The -vaddr and -uaddr command line options are very common for specifying what block of
RAM (the lower and upper limit) is allowed to be used for variables and the BASIC environment.

Copyright A 1989-1995 Binary Technology, Inc. 63 Version 5.0

The -xaddr command line option tells your program where to go when it is done. use -x0 to have
your program automatically restart when it exits (assming your program starts at 0H). Many
engineers have on-board monitors that they jump to as well.

Many engineers use the -l command line option to reduce program code size. This comes at a
price, however, because -l removes all line numbering information which may be useful for
debugging.

Customizing Compiler Options

When you establish a set of command line options which you prefer to use, you can customize
BXC-51 to always assume them. Do this by setting the DOS environment variable called
BXCFLAGS. If you SET this in your AUTOEXEC.BAT, then those defaults will always be used.
Of course, any command line options setup in BXCFLAGS may be overridden on the command
line. When BXCFLAGS is setup, BXC-51 will echo them each time the compiler starts. For
example, if you have this line in your AUTOEXEC.BAT file:

SET BXCFLAGS=-v5000 -u5FFF -b9600

and you invoke the compiler with this command

BXC51 -m HELLO.BAS

then you first see this line output before the compiler works on your source code:

BXC51 -v5000 -u5FFF -b9600 -m HELLO.BAS

This is BXC-51's way of informing you of your setup defaults. In the case of repeated command
line options (such as multiple -brate options), the rightmost option is used.

Compiling

To compile your BASIC source code, type the BXC51 command followed by the desired
command line options, followed by the BASIC source file. For example, to compile
HELLO.BAS to run at 9600 baud, type

BXC51 -b9600 HELLO.BAS

The .BAS file extension is optional unless you use a different extention.

If any errors are reported, you will need to alter your source code and re-compile before going
further.

Upon success, a .HEX file will be created. The .HEX file is your compiled program in the Intel
HEX file format. To also produce an Assembly listing, use the -a command line optoin which
generates a .LST file. For the above example, the file HELLO.HEX would be generated. It is
now ready to be downloaded or programmed.

Copyright A 1989-1995 Binary Technology, Inc. 64 Version 5.0

Downloading & Programming

This step varies from setup to setup. The goal of this step is to get the .HEX file onto a chip on
the target system.

If the target system has external RAM and ROM shared address space and a means of
downloading to the board (using a monitor on the board and a communications package on the
PC), that may be easiest. For the DS5000, the bootstrap loader does this. For other
microcontrollers, you will need to obtain a monitor (such as M/DP) and a communcations
package (such as Kermit or QComm). Contact Binary Technology, Inc. if you need them.

Another popular technique is to program an EEPROM with a programmer. See your
programmer's instructions for further details.

Running

Once the .HEX file is on the target system, power on the unit and reset it. If you located your
code at 0H (the default), your program runs immediately. If it does not, consult the next section,
Troubleshooting, for possible causes. If you located your program elsewhere, you will need to
use your monitor to run your code or otherwise trigger it to start.

Upon completion, your compiled program will output the message

Program terminated.

to the serial port.

When running your program over and over again to debug it into perfection, you may find it
useful to use a simulator such as BXC-51 Simulator (available from Binary Technology, Inc. A
simulator allows you to see all the details of how your program executes and provides an
interactive means of interrogating and changing your environment as you run and re-run your
program.

Troubleshooting

If your BXC-51 compiled program does not run, consult this checklist.

1. Did you specify the -brate command line option when you compiled your program. If
not, your program is waiting for you to press the spacebar to determine the baud
rate.

2. Do you have external RAM where you specified in the -vaddr command line option.
Without RAM, your program cannot run.

3. Is your program in the same contiguous RAM space as your variables? If your program
is located above your variable space and you did not use the -uaddr command line

Copyright A 1989-1995 Binary Technology, Inc. 65 Version 5.0

option to set the upper limit of RAM, your program will CLEAR itself. This is not
a problem when working with a PROM.

4. If your program is in RAM, is the RAM chip configured as program memory space.
Assembly programs can only be executed out of the 'ROM' or program memory
space.

5. Is your program located at 0H? On the 8052 microcontroller, make sure your pin isEA

tied low to disable the internal ROM for BASIC-52 interpreter.

6. When mixing assembly language and BASIC, ensure that you have not relocated the
stack pointer into the byte variable storage space. Also make sure that the PSW is
set to RB0 when returning from your subroutine.

7. When your program starts, does it immediately output MEMORY ALLOCATION? If
so, there is either no or not enough external RAM on your board. There must be
200H bytes plus enough for BASIC variables. If using the -uaddr command line
option, make sure memory goes that high.

Copyright A 1989-1995 Binary Technology, Inc. 66 Version 5.0

9. BASIC Program as Assembly Subroutine

Use the -sub command line option to instruct BXC-51 to create an assembly subroutine that will
coexist with other assembly subroutines. Use the -vaddr and -uaddr command line options to
limit the area of RAM that the BXC-51 subroutine may use. When using the -paddr command
line option to specify where the subroutine starts, be careful to route the appropriate interrupt
vectors up to the subroutines: if your subroutine uses ONEX1, the X1 interrupt needs routing; if
your subroutine uses the real time clock, the T0 interrupt needs routing (see the explanation of the
-paddr command line option on page 124).

To use the subroutine, CALL the address specified by the -paddr command line option. When
the BXC-51 code is finished running, it will RETurn back to the CALL. The stack may be
severely altered by the use of byte variables so only one level of RETurn addresses can be
guaranteed.

Before CALLing the subroutine, the BASIC environtment must already be initialized starting at
the address specified by the -baddr command line option. This includes initializing MTOP.

The -xaddr command line option is ignored. Whether the BXC-51 subroutine completes with an
error or not, it will RETurn to the address that CALLed it.

If your BXC-51 subroutine is CALLed from the MCS BASIC-52 interpreter, you can also specify
the -2i command line option. This will reduce the size of the BXC-51 subroutine. Read the
section "BXC-51 Programs Coexisting with MCS BASIC-52" for additional comments.

Some BASIC command are not well suited for subroutines. If possible avoid command
dependent upon interrupts such as CLOCK1 and ONEX1. Try to avoid commands that
dynamically allocate memory: DIM, dynamic strings, and STRING. Byte variables may overlap
with other subroutine's use of the stack; use DEFVAR to locate byte variables safely away from
the internal stack.

Initializing a Minimum BASIC Environment

When a BASIC program compiled as a subroutine runs, it expects the BASIC environment to be
already initialized. Make sure the following minimum has been initialized:

1. Clear all external RAM from RAMORG to RAMORG+200H. Store a 0 in each byte.

2. Clear all internal RAM from 8H to 4DH.

3. Set MTOP (10AH and 10BH) to the upper limit of external RAM that the subroutine
may use. Copy this value to VARTOP (104H and 105H), and ST_ALL (106H
and 107H).

Copyright A 1989-1995 Binary Technology, Inc. 67 Version 5.0

4. If using DIM, set MT_ALL (108H and 109H) to the first byte following your allocated
BASIC variables. In the Assembly listing, the label PSTART holds this address.
Also set DBY(42H)=6.

5. If using any commands dependent upon the crystal value, initialize XTAL.

6. Setup the Argument Stack with DBY(9)=0FEH.

7. Setup the Control Stack with DBY(11H)=0FEH.

8. If using READ and DATA, place RESTORE at the top of the subroutine to initialize
READ. (Otherwise, READ will cause unpredictable results.)

9. If using buffered serial input, place

SBUFFER OFF: SBUFFER ON

at the top of the subroutine.

You only need to initialize the subroutine once. If multiple subroutines share the same common
external RAM range, then that external RAM range need only be initialized once.

Once the subroutine starts, use the CLEAR command to reset all BASIC variables. Otherwise,
the BASIC variables will have the previous (or if no previous, random) values.

Converting Your Program Into a Subroutine

Using the -sub command line option generates only slightly different code than normal. The
internal and external memory are not initialized. The board is assumed to be already initialized
compatible with MCS BASIC-52. To properly initialize them, either start up the BASIC-52
interpreter, run a standalone BXC-51 compiled program, or initialize memory as outline in the
section "Initializing a Minimum BASIC Environment" above. Each performs BXC-51's normal
board initialization (setting up special registers, clearing memory, and system RAM initialization).

The other code difference is what your program does when it starts and when it exits. Normally,
DBY(03EH) holds the internal stack pointer's holding register and typically has a value around
04DH. This value is the stack's home position and is used to prevent a runaway stack. The called
subroutine needs its own stack space and a higher home position to preserve the calling program's
stack (which requires additional internal stack space). So when the BXC-51 subroutine starts, it
copies (onto the system stack) the old value at 03EH and replaces it with the current stack
position. Upon exiting, the value of 03E is recovered and the stack position is restored so a RET
will successfully return to the calling program. Because the stack's home position is not reliably
known, BXC-51 subroutines should not use byte variables unless those variables are declared at
specific addresses with DEFVAR.

For other variables such as floating point or integer variables, use the DEFVAR command (page
20) to share them with other subroutines or Assembly code.

Copyright A 1989-1995 Binary Technology, Inc. 68 Version 5.0

When writing BASIC code which will become a subroutine, try to keep the following points in
mind:

 If you want all your variables initialized to 0 when your subroutine starts, make sure you

use the CLEAR command. Otherwise, they persist from CALL to CALL.

 Do NOT end your program with the RETURN statement. It will cause errors. End
your program with END or STOP as your normally do. Note that if a run-time
error occurs in your program, it will still return to the assembly code that called it

(unless you trap errors with ONERR and use the -e command line option).

 Try to use ONTIME, ONEX1, and ONERR inside only one program/subroutine. It gets
messy if multiple Assembly routines set up an ONTIME statement because the

results are unpredictable. If both subroutines share the same variable space (have

the same -vaddr command line option), then it will work. Note that the interrupts
set up by the interpreter are different than the BXC-51 interrupts, so the
ONTIME, ONEX1, and ONERR commands should not be used in BXC-51
subroutines when executing a program running in the interpreter. This is because
the interpter record the line number to GOTO upon interrupt whereas the

compiled code remembers the Assembly address.

 Byte variables typically start at 04EH in internal RAM. If you have multiple BXC-51
programs using byte variables, there will be overlap. If you have assembly code
which uses 04EH and up, it too will overlap. To correct for this, use DEFVAR to
declare byte variables at specific locations. The area above 07FH on the 8052 is
ideal for this purpose.

 Floating point and integer variables must be declared in precisely the same order if two

BXC-51 programs/subroutines share the same variable space (using the same

-vaddr command line option). This can be done by initializing them at the top of
your program (do not GOSUB/GOTO an initialization routine). As the variables
are used, the compiler sets aside space for them. All floating point, integer, string,
and array variables take up space in separate blocks in RAM. If multiple variable
types are used and a different amount of one type of variable is declared in one

program than the other, then the variables will not overlap properly. To verify that

your variables do overlap properly, use the -m command line option to create a
map for both programs' variables.

 You should determine how much RAM your subroutine requires and use the -vaddr and

-uaddr command line options to keep your subroutine contained in that RAM

space.

Remember that each compiled BXC-51 subroutine uses as much of the BXC-51 library code as it
requires. If you have multiple BXC-51 subroutines, you will have multiple copies of parts of the
library. If this is a problem for you, inquire about the BXC-51 Library Toolkit available from
Binary Technology, Inc.

Copyright A 1989-1995 Binary Technology, Inc. 69 Version 5.0

Coexisting with BASIC-52 interpreter

You can compile BXC-51 programs that safely coexist with MCS BASIC-52 if you are careful

how you instruct BXC-51 to behave. Use the -2i command line option to instruct BXC-51 to use
assembly routines out of the MCS BASIC-52 ROM as much as possible. Here are some points to
look out for:

 BXC-51 assumes your board is only partially initialized and proceeds to fully initialize it.

The CLEAR statement is performed. This may clear any MCS BASIC-52 program

in memory. To avoid this, use the -vaddr and -uaddr command line options to
limit the segment of memory being cleared. The CLEAR is necessary to guarantee
that your variables are initialized to 0.

 Interrupt handling is not performed by MCS BASIC-52 while your BXC-51 program is
running. Any ONEX1 or ONTIME statements executed by an MCS BASIC-52

program will cause the BXC-51 program to crash if the interrupt occurs. You
may, however, use ONEX1 or ONTIME in your BXC-51 program, without
problems.

 Similarly, ONERR should be used carefully. Any ONERR statement executed by an
MCS BASIC-52 program will cause the BXC-51program to crash if a

non-arithmetic error occurs when using -e command line option. An ONERR

statement in your BXC-51 program will trap most, but not all errors since BXC-51
uses all the MCS BASIC-52 floating point arithmetic routines, all floating point
errors are handled by MCS BASIC-52.

Otherwise, BXC-51 uses nearly all of the system variables in external RAM from 0H to 200H for
the same purposes as MCS BASIC-52. Some non-run-time variables used by MCS BASIC-52
have been given other uses in BXC-51. See the next section for system variable architecture.

Copyright A 1989-1995 Binary Technology, Inc. 70 Version 5.0

10. Compiled Program Structure

BXC-51 compiled programs use internal RAM and external RAM highly similar to MCS

BASIC-52 interpreter. However, the program code is completely different. In the interpreter, the
program is located in RAM and stored as a linked list of tokens evaluated and re-evaluated at
run-time. The compiled code is 100% Assembly code. In the following sections, the architecture
of the Assembly code, internal RAM, and external RAM is described.

Code Memory Architecture

The following diagram shows the basic architecture of your compiled code. The diagram assumes

that the beginning of program code (ROMORG) is set to 0000H. If -paddr was specified, add
addr to the offset constants at left.

JMP START

X0 Interrupt

T0 Interrupt

X1 Interrupt

T1 Interrupt

SIO Interrupt

T2 Interrupt

Interrupt Support

Library Routines

Serial Number

Translated BASIC

Program Constants

S_N

B52RUN

START

VERYEND

0000H

0003H

000BH

0013H

001BH

0023H

002BH

 FP0
STR0

Every program, whether compiled as a subroutine or standalone program, whether compiled for

the 8052, 8051, DS5000, or a derivative microcontroller follows this basic architecture. In
microcontrollers that do not support Timer2, the T2 Interrupt at 002BH is not present. On the
other hand, derivative microcontrollers that support additional interrupts insert those interrupt
service hooks immediately following 002BH, pushing the rest of the code further up in memory.
Constants are not used in the diagram from the serial number through to the library routines

Copyright A 1989-1995 Binary Technology, Inc. 71 Version 5.0

because the address of them varies depending upon command line options and BASIC source
code. Instead, the diagram shows the Assembly labels which begin at each address. These labels
may be used by in-line Assembly code.

If your code starts at a memory location other than 0H, the interrupt handlers will not be active
unless you route stray interrupts upto your program. If you use ONEX1, external interrupt 1
(X1) must be routed up to ROMORG+13H. If you use the real time clock (CLOCK1/CLOCK0),
timer overflow 0 (T0) interrupt must be routed up to ROMORG+1BH. If you are use derivative
microcontroller ONintr commands, the respecitive interrupt must be routed as well. Interrupt
rerouting is not necessary if these interrupt causing commands are not used.

External Memory Architecture

The BASIC environment occupies the first 200H bytes of external RAM. By default, the

beginning of external RAM (RAMORG) is 0000H, however it may be relocated using the -vaddr

command line option. Here's a basic diagram of external RAM architecure:

0000H
BASIC System Variables

Dynamic String Buffer

Serial Port Buffer

BASIC Program Variables

DIMensioned Arrays

Free Memory

Dynamic Strings

Static Strings

0200H

0300H

PSTART

MAXMEM

External RAM is designed as a stack of memory blocks. When one memory block is not needed,
such as the Serial Port Buffer or Dynamic String Buffer, they occupy 0 bytes of external RAM,

leaving room for the other memory blocks. Programs that use neither dynamic strings or serial
port buffering have BASIC program variables starting at 200H. All the blocks at and above
PSTART are created dynamically at run-time, as needed. The MEMORY ALLOCATION error
typically displays when the blocks around the Free Memory block attempt to push into it so much
that there is no more free memory left (by dimensioning an array, creating too many static strings,
or storing too much text in dynamic strings.) The MAXMEM Assembly label is only created

Copyright A 1989-1995 Binary Technology, Inc. 72 Version 5.0

when the -uaddr command line option was specified. Otherwise, the value of MTOP is used
(which is determined at program startup).

Note that if the -2i command line option is used, the BASIC System Variables are locked in at

0000H while the -vaddr command line option dictates where the Dynamic String Buffer begins,
which is typically not 200H.

The BASIC System Variables are required for maintaining the BASIC environment which
includes the Argument and Control stacks. Here is a detailed memory map of it:

Address
(Hex)

Assembly
Label

Description

000-001 Reserved for future use
002-003 ERRLN Line number where the last error occurred
 004 IBCNT The length of input line
005-006 IBLN Currently executing line number
007-050 IBUF Input buffer
051-05D CONVT Floating point to integer conversion scratch space
05E Reserved for future use
05F Warm restart flag, if set to A5H (see -w command line

option, page 123)
060-0FB Control Strack (C-STACK)

0FF Reserved for future use
100 GTB Last character received, next char for GET.

When a serial port buffer is on, this location contains the

number of characters presently buffered.
101 ERRLOC The error number of the last error to occur (see ONERR on

page 28)
102-103 ERRNUM The Assembly address of where to go for ONERR
104-105 VARTOP Beginning of static string memory (end of dynamic strings)
106-107 ST_ALL Bottom of dynamic string memory (end of free RAM)
108-109 MT_ALL Top of DIMensioned memory (beginning of free RAM)
10A-10B MEMTOP Topmost address in RAM that BASIC may use (MTOP)
10C-10D RCELL Random number generator seed
10E-113 CXTAL-5 Crystal value (see XTAL on page 61)
114-11F Scratch area for two temporary floating point numbers
120-121 INTLOC The Assembly address of where to go for ONEX1
122-123 STR_AL Size of allocated static string space
124-125 SPV Serial port baud rate timer information for printer output
126-127 TIV Timer interrupt vector - where to go for ONTIME
128-129 PROGS Regular time-out for PROM programmer
12A-12B IPROGS Intelligent time-out for PROM programmer
12C Reserved for future use

12D-1F8 Argument Stack (A-STACK)
1F9 VCOUNT Count of pending interrupts (for derivative microcontrollers)

Copyright A 1989-1995 Binary Technology, Inc. 73 Version 5.0

1FA-1FB VTABLEP Address of interrupt table for derivative microcontrollers
1FC-1FF Reserved for future use

Internal Memory Architecture

The BASIC environment is contained partly in internal memory as well. Register banks 1 and 2
as well as memory locations 22H through 4DH are part of the BASIC environment. Register

bank 0 is used as the primary register bank for subroutine parameters and temporary results.
Register bank 3 is reserved for user Assembly applications. The following diagram demonstrates
the basic architecture of internal RAM.

Register Bank 0

BASIC Pointers

Free Register Bank 3

BASIC Bit Variables

BASIC Misc. Variables

User Byte Variables

System Stack

00

08

18

22

27

4E

Free RAM

The System Stack is located immediately after the BASIC byte variables. If no byte variables are
used, the System Stack begins at 4EH. Free RAM is all the memory above the System Stack. In
general, the System Stack should have at least 28H bytes of RAM to use.

The following is a detailed description of how BASIC uses internal memory.

Address
(Hex)

Assembly
Label

Description

00-07 R0-R7 Register Bank 0, the default register bank
 08 TXAL Control Stack jump address, low
 09 ASTKA Top of Argument Stack position
0A TXAH Control Stack jump address, high

0B-0F TEMP1-
TEMP5

5 user-defined bytes

10 RTXAL DATA item pointer, used by READ command, low byte

Copyright A 1989-1995 Binary Technology, Inc. 74 Version 5.0

Address
(Hex)

Assembly
Label

Description

11 CSTKA Top of Control Stack position
12 RTXAH DATA item pointer, high

13-14 Reserved for interpreter - beginning of BASIC program
15 NULLCT Count of NULs to follow carriage return
16 PHEAD Print head position of output, used for TABbing
17 FORMAT Floating point number output format (set by USING)

18-1F Register Bank 3 - not used (reserved for user)
20-21 Not used (reserved for user)
22H.0 OTS Flag: ONTIME vector setup
22H.1 INPROG Flag: ONEX1 interrupt in progress
22H.2 INTBIT Flag: Interrupts pending
22H.3 ON_ERR Flag: ONERR executing
22H.4 OTI Flag: ONTIME interrupt routine in progress
22H.5 LINEB Reserved for future use
22H.6 INTPEN Flag: External interrupt 1 detected
22H.7 CONB Reserved for future use
23H.0 GTRD Flag: Set when GET character ready
23H.1 LPB Flag: Servicing PRINT@
23H.2 CKS_B Flag: Trap timer1 interrupts, send them to 2088H
23H.3 COB Flag: Console output to line printer
23H.4 COUB Flag: Console output is user defined
23H.5 MUL_LIMIT_

CASE
Flag: Floating point underflow/overflow at limit detected

23H.6 CIUB Flag: Console input is user defined
23H.7 SPINT Flag: Trap serial port interrupt, send them to 2050H
24H.0 STOPBIT Reserved for future use
24H.1 U_IDL Flag: User idle bit to quit IDLE
24H.2 INP_B Flag: INPUT command being executed
24H.3 FPTRAP Flag: Trap floating point output (used by STR$())
24H.4 ARGF Reserved for future use
24H.5 RETBIT Flag: RETI command being executed
24H.6 I_T0 Flag: Trap external interrupt 0, send them to 2040H
24H.7 UPB Flag: When set, PRINT@ will call 4030H
25H.0 TRONBIT Flag: Set when TRACE1 executed for tracing
25H.1 BUFOFF Flag: Set when SBUFFER is disabled
25H.2 UBIT Flag: Used by DIM command
25H.3 ISAV Flag: Temporary bit for interrupt status
25H.4 BO Flag: When set, use output routine at 2040H
25H.5 XBIT Reserved for future use
25H.6 C_BIT Flag: Set when CLOCK1 executed for updating TIME
25H.7 SBUFSIL Flag: Set for no echo on serial input
26H.0 NO_C Flag: Set to ignore Ctrl-C input as user interrupt

Copyright A 1989-1995 Binary Technology, Inc. 75 Version 5.0

Address
(Hex)

Assembly
Label

Description

26H.1 DRQ Flag: Set to enable fake DMA
26H.2 BI Flag: When set, use character input routine at 2068H
26H.3 INTELB Flag: Set for intelligent PROM programming
26H.4 C0ORX1 Flag: When set, text from ROM being printed (not RAM)
26H.5 CNT_S Flag: Set when Ctrl-S received (suspends output)
26H.6 ZSURP Flag: Set to suppress leading zeroes during hex output
26H.7 HMODE Flag: Set for hexadecimal output of numbers
27 Reserved for future use

28-3D Floating point calculation scratch area
3E SPSAV System Stack home position (when empty)
3F S_LEN Static string length for all static strings

40-41 T_HH,T_LL Timer 1 reload value
42 ARRSIZ Used by DIM for unit size
43 XP2 Used on DS5000 as temporary holding of P2
44 Reserved for future use

45-46 MT1,MT2 Scratch area for transcendental functions
47 MILLIV Millisecond counter for TIME

48-49 TVH,TVL Seconds counter for TIME
4A SAVE_T Timer 0 reload value for TIME

4B-4C SP_H,SP_L Interrupt time value which causes ONTIME interrupt
4D Reserved for future use

4E-FF User Byte Variables
System Stack

Program Initialization

This section is useful if you are using the -i or -r command line option. It will aid you in
understanding what is initialized by the time your assembly routine is called. The following

initialization is not performed when the -sub command line option is specified.

1. When your program first starts up, it immediately initializes the SCON, TMOD,

TCON, and T2CON registers. On the 8051/31, DS5000, and derivative
microcontrollers, the registers are initialized to:

SCON - 5AH
 TMOD - 21H
 TCON - 84H
 T2CON - 00H

On the 8052/32, the special function registers are initialized to:

SCON - 5AH
 TMOD - 10H
 TCON - 54H

Copyright A 1989-1995 Binary Technology, Inc. 76 Version 5.0

 T2CON - 34H

See the table below for timer/counter usage by the 8051/31, DS5000 (-5 option),

and 8052/32 (-2 option) initializations. Derivative microcontrollers use the
timer/counters the same as the 8051/31.

Resource 8051/31 DS5000 8052/32

Console baud rate TIMER1 TIMER1 TIMER2

Printer baud rate N/A N/A TIMER1

CLOCK0/CLOCK1 TIMER0 TIMER0 TIMER0

PGM TIMER0 TIMER0 TIMER1

PWM TIMER0 TIMER0 TIMER1

Table 1. Timer/Counter Usage

2. If the -r command line option is specified, the location 2001H in code memory is
compared to the value AAH. If they are equal, a CALL to 2090H occurs.

3. The internal memory is cleared. On the 8051/31 DS5000, and derivative
microcontrollers, internal memory is from 0H to 7FH. On the 8052/32, internal

memory is from 0H to FFH. If the -w command line option is specified, the
internal memory is not cleared.

4. The internal stack pointer is set to 4EH (or higher if you have byte variables). To
change this in BASIC, use DBY(3EH) to set the new pointer value and execute
the CLEARS statement.

5. If the -brate option is specified, the serial port baud rate is initialized by setting up the
appropriate reload value.

6. If the -iaddr command line option is specified, the location XBY(RAMORG+5FH) is

tested. If the value found is A5H, the address specified after the -iaddr option is
CALLed. If you want your initialization routine to start the BASIC program,
execute a JMP to B52RUN.

7. Initialize external memory starting at the beginning of the variable space, probing to see

how far it extends. If the -uaddr command line option is specified, probing will not
be performed (but will be CLEARed later). If the upper limit of RAM is lower

than the value the address specified with the -uaddr value given, a MEMORY
ALLOCATION error will result during step (8) next. MTOP is set to the

determined upper limit of RAM (or address from -uaddr).

8. Set up the floating point Argument Stack and initialize the default crystal value of
XTAL to 11.0592 MHz.

Copyright A 1989-1995 Binary Technology, Inc. 77 Version 5.0

9. Set the baud rate. Wait for the user to hit the space character to determine the baud.

This step will be ignored if the -brate command line option was specified.

10. If the -g command line option was specified, then this message displays:

BXC-51 Compiled program filename

where filename is your source file's name.

11. The CLEAR command is executed to clear external RAM up to MTOP.

12. Any BXL initialization routines present are CALLed.

13. Execution of the first line of BASIC program begins.

Program Termination

This section descibes what occurs when a program terminates due to the END command, STOP
command, or run-time error.

1. Any BXL termination routines present are CALLed.

2. The following message displays:

Program Terminated.

3. Any interrupts enabled by the compiled program are disabled. This includes the real
time clock, external interrupt 1, and any derivative microcontroller interrupts
enabled using the ENABLE command.

4. An Assembly JMP instruction jumps the the exit address specified by the -xaddr

command line option. If no -xaddr command line option is specified, an infinite
loop begins.

Copyright A 1989-1995 Binary Technology, Inc. 78 Version 5.0

11. BXC-51 Programming

Although programming in MCS BASIC-52 is highly simiar to programming with BXC-51 there

are extra considerations when working with the compiler. The following sections cover
programming topics specific to the compiler.

Reducing Program Code Size

When developing a program, it may be permissible to have large programs, but finished products
or memory constraints may necessitate reducing your code size. Here are some suggestions:

 do not use the -g command line option. Although handy for debugging, it generates
extra code.

 use the -l command line option. Without the burden of keeping track of your source
code lines, this can save a lot of space in long BASIC programs.

 use the -brate command line option if possible. On the 8031/51, DS5000, and derivative

microcontrollers, a lot of code goes into determining the baud rate; on the
8032/8052, only a little code is generated. However, if you know the baud rate,
no extra code is generated.

 use the -c0 command line option if you are not using the UI1, U01, or PRINT@
commands, or if you don't care about user console I/O and stray interrupts. Extra
code is generated to accommodate the vectors starting at 4000H.

 use BXC-51 Version 3 or later. Starting with Version 3, BXC-51 puts in extra effort to
generate only code for what you need and still provide the benefits of the BASIC
programming environment (such as Ctrl-C, Ctrl-S, source line tracking, and error
reporting) thus keeping programs small.

 if you have an 8052 with MCS BASIC-52 enabled, use the -2i command line option.
This greatly reduces the size of the library that your BXC-51 program depends
upon.

 if you are using a DS5000 CPU and you are not using any on-chip 'external RAM', do

not bother with the -5 command line option, use the -1 (one, not L) command line
option.

Speeding Up Run-Time Execution

Follow these tips to speed up your program at run-time.

 use integer array indices, not floating point variables. Floating point calculations are
much slower than integer calculations.

Copyright A 1989-1995 Binary Technology, Inc. 79 Version 5.0

 avoid using FOR, DO; implement them using GOTO/IF. For example:

10 REM DO
20 A=A+1
30 IF A<10 THEN 10: REM WHILE A<10

 unlike the intepreter, GOTO and GOSUB are fast. There is no need to place
subroutines at the beginning of your program for speed. Your compiled program

will GOSUB the first line of code just as fast as the last line.

 do not use dynamic strings. Although convenient, handy, and powerful for text
manipulation, they are very slow because they use memory so dynamically.

 use -l (L, not one) command line option; or, alternatively, do not use line number except
where needed. Each line number generates code to note the line number. Without
line numbers, no time is wasted recording line numbers.

 initialize an array instead of using READ/DATA. Assign the values directly to the array
elements instead of using READ to initialize them. The source code will be

bulkier, but faster.

 avoid floating point calculation; use integer calculations as much as possible. For
example, if you need to keep track of voltage levels from .05 to 5.00, consider
using a fixed decimal number as an integer variable with values from 5 yo 600.
For output pruposes, just divide by 100.

Optional Integer Expressions

In many places in BASIC-52, the compiler expects an integer expression, but a floating point
expression is acceptable. These are optional integer expressions. If you provide an expression
with only integer data type variables, values, and functions, BXC-51 will calculate it fast.

However if there are any floating point data type variables, values, or functions used, then the
whole expression is treated as a floating point expression and then converted to integer. Optional
integer expressions are used as:

 array and string indexing (e.g., A(I%) is faster than A(I) because I% is processed faster
than I.)

 parameters to functions: TAB(), SPC(), CHR(), ASC(), DBY(), CBY(), XBY(). The
parameters to these functions are integers.

 parameters to commands: LD@, ST@, IF-THEN, ONTIME, PWM, STRING, WHILE,

UNTIL. As necessary, each of these commands reduces its parameter to an
integer before executing.

 value for special variable assignments: IE, IP, TCON, and other special variables,
except for XTAL and TIME.

Copyright A 1989-1995 Binary Technology, Inc. 80 Version 5.0

One of the most common optional integer expressions that slows calculation is the use of a
floating point variable.

Optimized Integer Expressions

Starting in BXC-51 Version 3, integer expressions are optimized for speed and code size. The
following strategy is used:

 constant expressions are calculated at compile time (e.g., A%= 2 + 5 is converted to

A%= 7 before compiling).

 expressions in parentheses are calculated first. This reduces integer stack clutter.

 terms are rearranged to reduce register transfers (e.g., A%+ B%* C% will be performed
by B%* C%+ A%).

Cross-Reference Information

Cross-reference information can tell you which BASIC lines refer to other lines as well as which
BASIC variables are used where in your program. The cross-reference information is produced
by the assembler. Compile your program using the normal command line options with this new

option: -a-c. This option tells the compiler to add -c as a command line option to the assembler.
When the assembler finishes, you will have a .LST file with cross-reference information at the

end.

The cross-reference information will be the very last section of the .LST file. The information is
displayed like this:

 ln30 = 40AA 88 140

Which displays the label name, its address, and the assembly listing lines where the label is
referenced. In this case, we see that line number 30 is located at 40AAH in memory and it is
referenced at line 88 and line 140 of the listing (the lines in the listing are numbered). One of
those two lines is where LN30 is defined and the other is where another line performed either a
GOTO or GOSUB to the line.

In the assembly listing, all labels beginning with "ln" refer to line numbers with the line number as
the rest of the label. All lables beginning with "ll_" are line labels with the BASIC label name as
the rest of the assembly label, for example ll_lift is the assembly label for the BASIC
{LIFT} line label.

Similarly, BASIC variables can be cross-referenced when you know how to identify their
assembly label equivalents. Here is a list of assembly label prefixes and the respective BASIC
variable type:

Prefix BASIC Variable Type

Copyright A 1989-1995 Binary Technology, Inc. 81 Version 5.0

V_ Floating point variable
IV_ Integer variable
BV_ Byte variable

SV_ Dynamic string variable
AV_ Floating point array variable
IAV_ Integer array variable
BAV_ Byte array variable
SAV_ Dynamic string array variable

For best understanding, you should not use the -l command line option when generating a

cross-reference listing since it strips out of the listing file the comments which show the BASIC
source text.

Line Renumbering

A line renumbering utility is provided on your BXC-51 disk to help you maintain your BASIC
code and make it easier for you to share sections of code between your BASIC programs by only
renumbering certain ranges of lines.

In its simplest use, RENUM will renumber all the lines of your BXC-51 program. You may
specify the desired starting line number and the increment between lines. For example, if you
want the first line of BASIC code to be line 1000 and all successive lines to be incremented by 10,

and your program file is PROGRAM.BAS, type:

RENUM PROGRAM.BAS 1000 10

at the DOS prompt. Your file will be completely renumbered. Any references to the old line
numbers will be appropriately changed. If you do not specify a starting line or increment, each
defaults to 10.

In a more advanced use, you can choose to renumber just a portion of your program. If you have
a range of lines between 1000 and 1100 and you want them to be renumbered starting at 2000
and incremented by 5, type:

RENUM PROGRAM.BAS 1000-1100 2000 5

RENUM does not let you move lines of BASIC around to different parts of the file. It keeps your
file in order and only renumbers some lines. If you attempt to renumber the range of lines to an

existing line number, RENUM reports an error and stops.

National Language Support

Although BXC-51 outputs English text by default, it is not limited to English. Upon start up,

BXC-51 attempts to read the file BXC51.LSF. If absent, the default English messages are used.
If present, the messages in that file are used instead of English ones. Each message has a number.
When BXC-51 needs to output a message, it looks up the message by number. If the
BXC51.LSF file is present, BXC-51 seeks the message number. The text following the found

Copyright A 1989-1995 Binary Technology, Inc. 82 Version 5.0

message number will be displayed instead of the English text. (If the sought message number is
missing, the default English text is used.)

The following is the default contents of BXC51.LSF if such a file was needed for an English

version of the BASIC Compiler. Translate each English message to your language, store them in
BXC51.LSF, and see BXC-51 output messages which you do not need to translate.
Explanations of the error messages begins on page 134.

1 Variable space adjusted to
2 Unknown command line option
3 You must first INSTALL BXC51 before running it
4 bytes of RAM is insufficient space
5 Use the -p flag to specify a ROM address above 2000H when using -2i
6 BASIC file must be last parameter
7 Cannot open
8 Insufficient memory
9 Cannot open BXC51.LIB for library routines
10 Cannot open %s for output
11 Out of memory
12 Invalid BASIC line
13 Unable to complete assembly
14 lines successfully compiled
15 Cannot write memory map file
16 defaulting byte array
17 Line label
18 Unknown line numbers:
19 Unknown line labels:
20 Your version of BXC51.LIB does not match BXC51.EXE
21 Please update BXC51.LIB before proceeding.
22 Undefined symbols:
23 Warning: TRACE is useless when -l option is on
24 Warning: vectored CALL statement to 100H+
25 Warning: CALL's made to BCS-52 Interpreter ROM are not valid
26 Warning: Serial buffer cannot exceed 253 characters. Truncated.
27 Warning: variable already DEFined
28 Warning: byte variables below 4EH overlap with BASIC system variables
100 8052-specific operation has no effect on 8051
101 BAUD refers to printer serial port which is not available on 8051
102 PI is not an integer constant, using 3
103 XBY%/CBY%/DBY%: integer array name might be confused with special byte

function XBY#/DBY#/CBY#
120 ELSE without a preceding IF
121 Illegal FOR index variable
122 You cannot change ROM
123 Too many parenthesis or expression too complicated
124 RND is not an integer function
125 XTAL is not an integer variable
126 TIME is not an integer variable
127 bit address too high (after .)
128 string not allowed here, expecting a number variable
129 out of byte variable memory space
130 byte array redimensioned to different size
131 byte variable defined out of byte space (0...127)
132 control register not in correct range (128...255)
133 memory mapped variables cannot be DIMensioned
134 variable is not bit addressable
135 Expecting a line number or label
136 Unrecognizable command
137 Expecting an integer expression
138) expected
139 Integer constant expected

Copyright A 1989-1995 Binary Technology, Inc. 83 Version 5.0

140 (expected
141 Variable expected
142 , expected
143 DATA item expected
144 Array variable expected
145 H expected for hexadecimal constant
146 Expression expected
147 = expected
148 TO expected
149 GOTO or GOSUB expected
150 # expected
151 0 or 1 expected
152 Another expression term expected
153 String expression expected
154 : expected
155 @ expected
156 Invalid DEF type
157 Identifier/Name expected
158 String expression expected
159 + expected
160 $ expected
161 } expected
162 Duplicate line label
163 Duplicate line number
164 Too many embedded IFs
165 ENDIF without a preceding IF
166 Expecting THEN
167 Exponentiation not allowed in integer/byte expression
168 % expected
169 Interrupt name expected (verify correct -t command line option)
200 Internal error %d\n

Text notes such as %s or %d are placeholders for where a string or integer is inserted in the
message. The compiler inserts a string or integer there to make the message more meaningful.

8051 Derivative Microcontroller Support

With BXC-51 Version 5.0, derivative microcontrollers of the 8051 family are supported. As
shipped, these microcontrollers are immediately supported: 8xC550 and 8xC552. Other
microncontrollers are supported, too, but they require some configuration on your part.

To specify a derivative microntroller, use the -tcpu command line option. Specify the

microcontroller name as cpu. For example, -t550 for the 8xC550.

Support for derivative microcontrollers comes in these forms:

support for additional or different interrupts

support for byte special function registers
support for 2 byte special function registers
support for internal RAM size configuration (128 or 256 bytes)
support for an external library of commands and initialization code (via BXL)
support for using DPTR exclusively for external RAM references (not Port 2)

For each derivative microcontroller, BXC-51 needs to know how the derivative microcontroller
differs from the 8051 family with respect to the items listed above. To find that configuration,

Copyright A 1989-1995 Binary Technology, Inc. 84 Version 5.0

BXC-51 first looks in the file named cpu.CPU, e.g. 550.CPU. If no such file exists, BXC-51
then checks in the file BXC51.CPU. In both case, the compiler searches for a line beginning with
$cpu. Once found, the compiler reads the text following it to understand the configuration.

Alternate nicknames of the derivative microcontroller may be used as well, for example:

$550 C550

The example allows a user to specify either -t550 or -tC550 as a command line option. Any
number of nicknames may be used. All text up to the next line that begins with $ will be read as
configuation for the microcontroller. The details of configuration are explained in the next
section.

Once configured, additional commands and new special function variables are available in your
BASIC program. For each interrupt configured, three BASIC commands appear:

ONintr line

ENABLE intr

DISABLE intr

Where intr is the name of the interrupt, e.g. T2, AD, WD, etc. The ONintr command is like the
ONEX1 command. When the interrupt occurs, a GOSUB to the subroutine at line happens.
That subroutine must return using RETI. The ENABLE command is like the CLOCK1 command
and the DISABLE command is like the CLOCK0 command. No interrupts will occur until they

are enabled. No interrupts will occur when disabled.

For every special function register configured, a new byte and integer variable is created using its
name. For example, if the special function register ADCON is configured, then ADCON# and
ADCON% may be used with meaning inside your BASIC source code. The configuration
determines whether ADCON is a one or two byte value, but it may be used as both an integer and
byte variable.

As an example of additional commands and special variables, see the "Support for 8xC550

section" below.

Derivative Microcontroller Configuration Commands

Configure support for additional derivative microcontrollers by creating a cpu.CPU file or adding

to the exsiting BXC51.CPU file. Begin the configuration section by placing the microcontroller
name (perfably short like 552) preceded by a dollar sign. For example:

$552

Multiple names may be specified if they are separated by spaces. Configuration continues until
the next configuration section that begins with a microcontroller name. In the file cpu.CPU, there
can be only one section and it must begin that microcontroller's name:

$cpu

Copyright A 1989-1995 Binary Technology, Inc. 85 Version 5.0

The configuration section is line oriented; one configuration command per line. Parameters to a
configuration command are separated by spaces or tabs. Configuration commands include: EQU,
INT, SFR, SFR2, RAM, DPTR, and BXL. Commands may be specified in upper or lower case.

Comment lines begin with the pound sign, #, are ignored.

EQU address name
Declare an Assembly equate. The text immediately generates this Assembly code:

name EQU 0addressH

Equates are particularly handy so that other configuration commands can refer to name instead of
a hexadecimal address. For example, an interrupt bit of ADCON:3 is more meaningful than
0C5H:3 when ADCON has been equated to C5H.

Any number of equates may be setup here. Typically, an equate is setup for each special function
register referred to by the INT configuration command. These equates are not accessible to
BASIC source code; they only support this derivative microcontroller at the Assembly level.

INT address name control-bit intr-bit [vec-addr]
Configure an interrupt. By default, BXC-51 assumes the following configuration:

INT 03 X0 N/A IE.0
INT 0B T0 TCON.4 IE.1
INT 13 X1 N/A IE.2
INT 1B T1 TCON.6 IE.3
INT 23 SIO N/A IE.4

For the 8052 microcontroller, this is additionally assumed:

INT 2B T2 T2CON.2 IE.5

These defaults may be overridden. However, overriding SIO and T0 may disable functionality

needed in the BASIC environment.

The address of the interrupt, vec-addr, is specified in hexadecimal. The name of the interrupt,
name, is used to create three new BASIC commands - ONname (see page 30), ENABLE name

(see page 22), and DISABLE name (see page 21) - for allowing a BASIC surboutine to handle
the interrupt.

The control bit, control-bit, is what enables and diables the function that causes the interrupt. For
example, the TCON.4 bit is the run control bit for Timer 0. If no control bit (or no single bit

controls the function), then use N/A instead. This signals the compiler to not allow the ENABLE
or DISABLE commands for this interrupt. If the control bit belongs to a register that is not bit
addressable, then use a colon instead of a period between the register name and the bit position.
For example, ADCON:3 will set bit 3 of ADCON, but it will not use the SETB Assembly
instruction; instead it will use ORL. For example, T2CON.2 generates

SETB T2CON.2

Copyright A 1989-1995 Binary Technology, Inc. 86 Version 5.0

to enable the interrupt. For ADCON:3, the

ORL ADCON,#8

instruction is used.

The interrupt bit, intr-bit, is used to enable or disable the interrupt. For example, IE.1 enables the
Timer 0 overflow interrupt. If you do not wish the user to handle interrupts in BASIC, then set

this bit to N/A. This signals the compiler to not allow the ONname command. Like the control
bit, if the interrupt bit belongs to a register that is not bit addressable, then use a colon, instead of
a period between the register name and the bit position.

The address to vector to when the interrupt occurs, vec-addr, is optional. If present, the compiler
does not allow the ONname command. Instead, the compiler will JMP to the vector address
provided. The vector address may be any valid Assembly address, whether it is an absolute
address or label. If you are providing BASIC extensions through a BXL, you may specify a label

in that BXL's initialization section.

SFR address name
Specify a special function register that may be queried and set in BASIC source code. The
address is in internal RAM. The address is assumed to be between 80H and FFH, but it may be
any value from 0 to FFH. A byte variable and integer variable are created by the name provided
for use in the BASIC source code as name# and name%. This is similar to the DEFCTRL
command for byte variables (see page 20). The BASIC source code may query the register
contents or assign a new value to it. For example, to allow the user access to the ADCON special

function register, use this configuration command:

SFR C5 ADCON

Consequently, this BASIC source uses it:

10 ADCON#.3 = 1
20 PRINT ADCON#

SFR2 addressH addressL name
Specify a special function register pair that may be queried and set in BASIC source code. The
high and low byte address of the pair must be specified. A byte variable and integer variable are
created by the name provided for use in the BASIC source code as name# and name%. The
BASIC source code may query the register contents or assign a new value to it. For example, to
allow the user access to the CT0 special function register, use this configuration command:

SFR2 CC AC CT0

Consequently, this BASIC source code uses it:

10 PRINT CT0%
20 CT0%= 56BH

Copyright A 1989-1995 Binary Technology, Inc. 87 Version 5.0

RAM size
The 8051 microcontroller contains only 128 bytes of internal RAM. All derivative
microcontrollers are assumed to have the same unless this command is specified. The only two
sizes supported are 128 and 256. When more internal RAM is available, the compiler allows the

BASIC program to have more byte variables.

DPTR [ONLY]
The 8051 microcontroller uses both the DPTR and P2 for accessing external RAM. Some
microcontrollers, however, have on-chip 'external' RAM which can only be accessed via DPTR.
This command tells the compiler that all external RAM should be accessed via DPTR. Without
this command, the generated code will access both the on-chip and external RAM at different
times. The running program will become confused by this. The keyword ONLY is optional.

BXL filename.BXL
Specify the BXL to automatically include. By including a BXL, you may provide microcontroller
initialization code, program termination code, and setup interrupt handlers with vector addresses

in the BXL. Additionally, you may make extensions to the BASIC language specifically
supporting the derivative microcontroller.

For example, setting up and feeding a watchdog timer requires accurate Assembly timing which
cannot be achieved with a regular BASIC program. The commands to support this could be
coded by you (or may have been coded by your dealer) so they are easily accessible in BASIC
source code through a new command.

Support for 8xC550

As shipped, BXC-51 supports the 8xC550 microcontroller. When the -t550 or -tC550 command
line options is specified, the following extensions are made to BASIC and may be used in your
program:

ONAD line
Specify the subroutine to execute upon completion of A/D conversion (when A/D interrupt is

detected). When an A/D interrupt occurs, a GOSUB will be induced to line. To return from the
subroutine, a RETI instruction must be used in place of a normal RETURN. When an A/D
interrupt occurs, the normal program flow is temporarily suspended while the interrupt is
processed. The program will then resume where it left off. The CLEAR and CLEARI statements
will remove the ONAD statement's interrupt processing ability. Without the ONAD statement,
BXC-51 ignores the A/D conversion complete interrupt.

DISABLE AD
This command attempts to reset the A/D conversion process, but it cannot be reset by software.

This command is useless and should not be used.

ENABLE AD
Start an A/D conversion. Upon completion, an A/D interrupt is generated (see the ONAD
command above). Each time this command is executed, A/D conversion begins again. If A/D
conversion is in progress, the command is ignored (it does not restart the A/D conversion

Copyright A 1989-1995 Binary Technology, Inc. 88 Version 5.0

process). Upon completion the A/D converter is automatically disabled, making it superfluous to
use the DISABLE AD command.

ADAT#
Use this byte variable to query or change the value of the A/D Data register. This register
contains the output of the A/D conversion. Use as a special byte variable.

ADCON#
Use this byte variable to query or change the value of the A/D Control register. This register

controls the A/D conversion. Use as a special byte variable.

WDCON#
Use this byte variable to set or query the value of the Watchdog Control register. Use as a special
byte variable.

WDL#
Use this byte to set or query the Watchdog Reload register value. Use as a special byte variable.

WFEED1#
Use this byte to query the Watchdog Timer Feed 1 register. To feed the Watchdog, a very
precise series of assembly instructions must be executed where timing is critical:

CLR EA
MOV BV_WFEED1,#0A5H
MOV BV_WFEED2,#05AH
SETB EA

WFEED2#
Use this byte to query the Watchdog Timer Feed 2 register. Use as a special byte variable.

Support for 8xC552

As shipped, BXC-51 supports the 8xC552 microcontroller. When the -t552 or -tC552 command
line options is specified, the following extensions are made to BASIC and may be used in your
program:

ONADC line
Specify the subroutine to execute upon completion of A/D Conversion (when A/D interrupt is
detected). When an A/D interrupt occurs, a GOSUB will be induced to line. To return from the
subroutine, a RETI instruction must be used in place of a normal RETURN. When an A/D

conversion complete interrupt occurs, the normal program flow is temporarily suspended while
the interrupt is processed. The program will then resume where it left off. The CLEAR and
CLEARI statements will remove the ONADC statement's interrupt processing ability. Without
the ONADC statement, BXC-51 ignores the A/D conversion complete interrupt.

DISABLE ADC
This command attempts to reset the A/D conversion process, but it cannot be reset by software.
This command is useless and should not be used.

Copyright A 1989-1995 Binary Technology, Inc. 89 Version 5.0

ENABLE ADC
Start an A/D conversion. Upon completion, an A/D interrupt is generated (see the ONADC
command above). Each time this command is executed, A/D conversion begins again. If A/D
conversion is in progress, the command is ignored (it does not restart the A/D conversion

process). Upon completion the A/D converter is automatically disabled, making it superfluous to
use the DISABLE ADC command.

ONCTn line
Specify the subroutine to execute when capture interrupt triggered for capture register n. There
are 4 capture registers, ranging from 0 to 3. Should a capture interrupt occur, a GOSUB will be
induced to line. To return from the subroutine, a RETI instruction must be used in place of a
normal RETURN. When a capture interrupt occurs, the normal program flow is temporarily
suspended while the interrupt is processed. The program will then resume where it left off. The

CLEAR and CLEARI statements will remove the ONCTn statement's interrupt processing ability.
Without the ONCTn statement, BXC-51 ignores capture interrupts for capture register n.

DISABLE CTn
Disable capture interrupt for capture register n, where n may range from 0 to 3, for a rising edge.
The falling edge interrupt is not affected. The appropriate CTCON register bit will need to be
cleared to also clear the falling edge interrupt. (See note in ENABLE CTn command below.)

ENABLE CTn
Enable capture interrupt for capture register n, where n may range from 0 to 3, when a rising edge
on CT0I is detected. When the interrupt occurs, it will generate a capture interrupt for register n
which can be serviced by the BASIC routine setup using ONCTn command above.

Note that this command only controls the rising edge interrupt for a capture (by setting the CTPn

bit in CTCON). If you wish to control the falling edge interrupt, you may set the CTNn bit in
CTCON yourself, e.g. CTCON#.1=1, or you may change the compiler default. To change the
compiler default, you will need to alter the BXC51.CPU file. Find the section beginning with
$552, find the interrupt for CTn and change the bit listed from CTCON:m to CTCON:o where
m=n*2 and o=n*2+1. See documentation for CTCON for an explanation of the bits. Once the
default is changed, the ENABLE and DISABLE commands will control the falling edge interrupt

rather than the rising edge interrupt.

ONCMn line
Specify the subroutine to execute when compare interrupt triggered for compare register n.
There are 3 compare registers, ranging from 0 to 2. A compare interrupt occurs when the
compare register matches the value of Timer 2 (and the interrupt is enabled). Should a compare
interrupt occur, a GOSUB will be induced to line. To return from the subroutine, a RETI
instruction must be used in place of a normal RETURN. When a compare interrupt occurs, the
normal program flow is temporarily suspended while the interrupt is processed. The program will

then resume where it left off. The CLEAR and CLEARI statements will remove the ONCNn

statement's interrupt processing ability. Without the ONCNn statement, BXC-51 ignores
compare interrupts for compare register n.

Copyright A 1989-1995 Binary Technology, Inc. 90 Version 5.0

Note that this is a very inefficient way of timing in BASIC. Due to the overhead of BASIC and
the relatively infrequent checks for interrupts, only slow timer rates are feasible. To be handled
properly, Assembly lanugage should be used to service the interrupt immediately. You will need

to reconfigure BXC51.CPU to specify your Assembly routine (see page 85).

DISABLE CMn
Disable compare interrupt for compare register n, where n may range from 0 to 2.

ENABLE CMn
Enable compare interrupt for compare register n, where n may range from 0 to 2, when a match
between CMn and Timer 2 occurs. When the interrupt occurs, it will generate a compare
interrupt for register n which can be serviced by the BASIC routine setup using ONCMn

command above.

ONT2 line
Specify the subroutine to execute when Timer 2 overflow interrupt is detected. Should a Timer 2
overflow interrupt 1 occur, a GOSUB will be induced to line. To return from the subroutine, a
RETI instruction must be used in place of a normal RETURN. When a Timer 2 overflow

interrupt occurs, the normal program flow is temporarily suspended while the interrupt is
processed. The program will then resume where it left off. The CLEAR and CLEARI statements
will remove the ONT2 statement's interrupt processing ability. Without the ONT2 statement,
BXC-51 ignores Timer 2 overflow interrupt.

DISABLE T2
Disable the Timer 2 overflow interrupt. After executing this command, Timer 2 overflows will no
longer generate interrupts.

ENABLE T2
Enable Timer 2 overflow interrupts. Once enabled, a Timer 2 overflow will generate an interrupt
which can be serviced by the BASIC routine setup using ONT2 command above.

ONS1 line
Specify the subroutine to execute when serial interrupt 1 is detected. Should a serial interrupt 1

occur, a GOSUB will be induced to line. To return from the subroutine, a RETI instruction must
be used in place of a normal RETURN. When a serial interrupt 1 occurs, the normal program
flow is temporarily suspended while the interrupt is processed. The program will then resume
where it left off. The CLEAR and CLEARI statements will remove the ONS1 statement's
interrupt processing ability. Without the ONS1 statement, BXC-51 ignores serial interrupt 1.

Note that this is a very inefficient way of gathering input from serial port 1. Due to the overhead

of BASIC and the relatively infrequent checks for interrupts, only slow baud rates are feasible.
To be handled properly, Assembly lanugage should be used to service the interrupt immediately.
You will need to reconfigure BXC51.CPU to specify your Assembly routine (see page 85).

DISABLE S1
Disable serial port 1. The ENS1 bit of S1CON is cleared.

Copyright A 1989-1995 Binary Technology, Inc. 91 Version 5.0

ENABLE S1
Enable serial port 1. Once enabled, as each character arrives, it will generate a serial port 1
interrupt which can be serviced by the BASIC routine setup using ONS1 command above.

ADCH#
The A/D Converter High register. Use as a special byte variable.

ADCON#
The ADC Control register. Use as a special byte variable.

CTCON#
The Capture Control register. Use as a special byte variable.

CTn%, CTn#
This is Capture register n, where n ranges from 0 to 3. Use as a special variable. Its value ranges
from -32768 to 0 to +32767 (8000H to 0 to 7FFFH).

CMn%, CMn#
This is Compare register n, where n ranges from 0 to 2. Use as a special variable. Its value

ranges from -32768 to 0 to +32767 (8000H to 0 to 7FFFH).

IEN0#
Interrupt Enable register 0. This is identical to the regular IE# variable in BXC-51. Use as a
special byte variable.

IEN1#
Timer T2 Interrupt Enable register. Use as a special byte variable.

IP0#
Interrupt Priority register 0. This is identical to the regular IP# variable in BXC-51. Use as a
special byte variable.

IP1#
Interrupt Timer T2 Interrupt Priority register. Use as a special byte variable.

PORT4#
The Port 4 register. Use as a special byte variable.

PORT5#
The Port 5 register. Use as a special byte variable.

PWMP#
The Pulse Width Modulation Prescalar register. Use as a special byte variable.

PWM0#
The Pulse Width Modulation ratio register 0. Use as a special byte variable.

Copyright A 1989-1995 Binary Technology, Inc. 92 Version 5.0

PWM1#
The Pulse Width Modulation ratio register 1. Use as a special byte variable.

RTE#
The Reset/Toggle Enable Register. Use as a special byte variable.

S0CON#
The Serial port 0 Control register. This is the same as the SCON# byte variable. Use as a special
byte variable.

S1ADR#
The Serial port 1 Address register. Use as a special byte variable.

S1DAT#
The Serial port 1 Data register. Use as a special byte variable.

S1STA#
S1CON#
The Serial port 1 control register. Use as a special byte variable.

STE#
The Set Enable Register. Use as a special byte variable.

TM2%, TM2#
T2%, T2#
The Timer 2 register. The current value of Timer 2. Use as a special variable. Its value ranges
from -32768 to 0 to +32767 (8000H to 0 to 7FFFH).

TM2CON#
The T2 Control register. Use as a special byte variable.

TM2IR#
The Interrupt Flag Register register. Use as a special byte variable.

T3#
The Timer 3 register. The current value of Timer 3. Use as a special byte variable.

Copyright A 1989-1995 Binary Technology, Inc. 93 Version 5.0

12. BASIC/Assembly Linkage

BASIC is a versatile, general purpose language. Although many programs and subroutines can be

written entirely in BASIC, there are some operations that require the speed of Assembly. The
following section is for the BASIC/Assembly programmer who wishes to add Assembly support
to a BASIC program.

In-Line Assembly

Use the $ASM compiler directive to insert Assembly language code directly into your BASIC
source code file. Use the $BASIC compiler directive to continue on with more of your BASIC
source code after your assembly code. The following is an example taken from the ASM.BAS
file:

5 REM This program demonstrates Assembly combined with BASIC
 $ASM
 MOV DPTR,#mymsg ; address of text
 CALL ROM_P ; print text
 CALL CRLF ; output CR and LF
 SJMP OVER1 ; skip over data
 MYMSG: DB 'This is my message!"'
 OVER1:
 $BASIC
 10 PRINT "And this is BASIC's message"

If you wish to include in-line Assembly into your BASIC source code and you wish to place it at a
specific memory address, you will need to use a trick. By changing the current memory address

with the ORG command, you change the location where the BASIC support library begins. Using
ORG separates your translated BASIC from your support library in ROM. To avoid this, use this
trick in your BASIC source code:

10 PRINT "Hello, World!"
$ASM
HERE EQU $; remember the current memory address

ORG 7700H ; our specific memory address
$include "mycode.asm"

ORG HERE ; recover previous memory address
$BASIC
20 PRINT "That's all!"

This example demonstrates how to divert the assembler so you can place your Assembly code up
at 7700H, but not to interrupt the code organization and flow of the BASIC program. If you
must interrupt your BASIC code in serveral places like this, you cannot re-use the Assembly label
HERE. In this case, use HERE1, HERE2, and so on.

Copyright A 1989-1995 Binary Technology, Inc. 94 Version 5.0

Handling Interrupts

If your program code is located at 0H, the interrupt handling performs in exactly the same way as
MCS BASIC-52 interpreter. In general, the PSW is pushed on the stack and an LCALL is
performed to an interrupt table at 4000H to handle the interrupt. The interrupt table at 4000H
must be provided by the programmer and is identical to the table at 0H (i.e., 4003H is external

interrupt 0, 400BH is the Timer 0 overflow interrupt, etc.). This table may be located elsewhere

if the -caddr command line option is specified.

Address Routine

4003H External Interrupt 0

400BH Timer 0 Overflow

4013H External Interrupt 1

401BH Timer 1 Overflow

4023H Serial I/O

402BH Timer 2 Overflow

4030H User Output

4033H User Input

4036H User Console Status

4039H User Reset

403CH User PRINT@

This is the code generated when your BASIC program is located at 0H:

; Interrupt control
; external interrupt 0
ORG 03H ; X0
JB DRQ,STQ ; DRQ set if DMA is set
PUSH PSW
JMP 4003H
RETI

; timer 0 overflow
ORG 0BH ; T0
PUSH PSW
JB C_BIT,STJ ; C_BIT set for real time clock
JMP 400BH

; external interrupt 1
ORG 013H ; X1
JB INTBIT,STK ; INTBIT set for ONEX1
JMP 4013H
RETI

; timer 1 overflow

Copyright A 1989-1995 Binary Technology, Inc. 95 Version 5.0

ORG 01BH ; T1
PUSH PSW
JMP CKS_I

STJ: JMP I_DR

; serial port interrupt
ORG 023H ; SIO
JMP BSPI ; only used when SBUFFER ON

; fake DMA code
LJMP 2040H

STQ: JB I_T0,$-3
CLR DACK
JNB P3.2,$
SETB DACK
RETI
; make note that ONEX1 interrupt pending

STK: SETB INTPEN
RETI
; End of interrupt control

The only interrupts that must be trapped by to your BXC-51 compiled program are external
interrupt 1, if you are using the ONEX1 statement, the timer0 overflow interrupt, if you are using
the built-in real time clock (CLOCK1/CLOCK0) and serial I/O interrupt, if you are using

SBUFFER ON. BXC-51 does not utilize the other interrupts.

If your program is not located at 0H and BASIC-52 interpreter is not present and enabled, you
must route three interrupts to the program code area. To make your interrupt handler smarter,
route only the external interrupt 1 to ROMORG + 13H when INTBIT (bit 18) is set; only route
timer overflow 1 interrupt to ROMORG + 0BH when (bit 46) is set; and only routine serial I/O
interrupt to ROMORG+23H when BUFOFF (bit 41) is clear.

The interrupt table generated for your code when your code is not at 0H has dummy entries for all

the interrupts that it does not use immediately by performing a RETI instruction. This is the code
generated:

ROMORG EQU 4000H
; Interrupt control
ORG ROMORG+03H ; X0
JB DRQ,STQ ; DRQ set if DMA is set
RETI

ORG ROMORG+0BH ; T0
PUSH PSW
JB C_BIT,STJ ; C_BIT set for real time clock
POP PSW
RETI

ORG ROMORG+013H ; X1
JB INTBIT,STK ; INTBIT set for ONEX1
RETI

Copyright A 1989-1995 Binary Technology, Inc. 96 Version 5.0

ORG ROMORG+01BH ; T1
PUSH PSW
JMP CKS_I

STJ: JMP I_DR

ORG ROMORG+023H ; SIO
JMP BSPI

ORG ROMORG+02BH ; T2
RETI

; fake DMA code
LJMP 2040H

STQ: JB I_T0,$-3
CLR DACK
JNB P3.2,$
SETB DACK
RETI
; make note that ONEX1 interrupt pending

STK: SETB INTPEN
RETI
; End of interrupt control

Library Routines

This section provides a supplement to engineers who combine assembly code with BASIC. It
explains assembly routines that BASIC commonly uses and that you may wish to use as well.
This is not intended to be a complete reference to BASIC/Assembly programming. However, a
complete reference can be found as part of the BXC-51 Library Toolkit (available from Binary
Technology, Inc.).

When using these routines, assume that they use all the registers in RB0, RB1, and RB2. The
registers in RB3 are available for your assembly program to use. Any input parameters are
expected in RB0. Before calling any of these routines, make sure the PSW is set to RB0 as the
default bank.

Floating Point Variable Fetch/Store

A floating point variable occupies six bytes of data. When pushing the value on the floating point
argument stack or popping it off, the address that you provide should be the sixth byte of data

rather than the first. To push the variable MYVAR onto the Argument Stack, use the routine
PUSHAS. For example,

 MOV R0,#LOW(V_MYVAR+5)
 MOV R2,#HIGH(V_MYVAR+5)
 CALL PUSHAS

To pop the value off the Argument Stack and store it in a floating point variable, use the POPAS
routine:

Copyright A 1989-1995 Binary Technology, Inc. 97 Version 5.0

 MOV R2,#HIGH(V_MYVAR+5)
MOV R0,#LOW(V_MYVAR+5)

 CALL POPAS

BXC-51 floating point variable labels are prefixed by the compiler with V_. For example, the
floating point variable A uses the label V_A.

Floating Point Operators/Functions

A number of floating point functions are provided in the BASIC environment to perform floating
point operations. Here is the list.

Routine Function
AADD Add two numbers
ASUB Subtract two numbers
AMUL Multiply two numbers

ADIV Divide a number by another
AEXP Raise one number to the power of another
AXRL Logically XOR two numbers together
AANL Logically AND two numbers together
AORL Logically OR two numbers together
ANEG Negate the number on the top of the stack

AEQ Compare two numbers for equality
ANE Compare two numbers for inequality
AGE Compare two numbers for >=
ALE Compare two numbers for <=
ALT Compare two numbers for <
AGT Compare two numbers for >

AABS Take absolute value
AINT Truncate the number down to an integer
ASGN Determine sign of number (1, 0, -1)
ANOT Logically NOT a number
ASIN Sine of number
ACOS Cosine of number

ATAN Tangent of number
AATAN Arctangent of number
ASQR Square root of number
ALN Natural logarithm of a number

AETOX Raise e to the power of number
ARND A random number

All of these routines operate on the values on the floating point Argument Stack. The results

from each of these routines will be left on the floating point Argument Stack.

Copyright A 1989-1995 Binary Technology, Inc. 98 Version 5.0

Integer Variable Fetch/Store

An integer variable requires two bytes of data. To fetch the variable MYVAR% from external
memory into R2:R0, put the address of the integer variable into DPTR and use the routine

IGETVAR. For example,

 MOV DPTR,#IV_MYVAR
 CALL IGETVAR

; value of variable now in R2:R0

To store a value into an integer variable, load the value into R3:R1, load the address of the
variable into DPTR, and use the IPUTVAR routine. For example,

 MOV DPTR,#IV_MYVAR
MOV R1,#LOW(VALUE)
MOV R3,#HIGH(VALUE)

 CALL IPUTVAR

BXC-51 integer variable labels are prefixed by the compiler with IV_. For example, the integer
variable A% uses the label IV_A.

Integer Operators/Functions

A number of integer functions are provided in the BASIC environment to perform integer
arithmetic. Here is the list.

Routine Function
IADD Add R3:R1 with R2:R0 and store in R3:R1
ISUB Subtract R2:R0 from R3:R1 and store in R3:R1
IMUL Multiple R2:R0 by R3:R1 and store in R3:R1
IDIV Divide R3:R1 by R2:R0 and store in R3:R1

IEQ Set R3:R1 equal to the result of R3:R1 = R2:R0
IGE Set R3:R1 equal to the result of R3:R1 >= R2:R0
IGT Set R3:R1 equal to the result of R3:R1 > R2:R0
ILE Set R3:R1 equal to the result of R3:R1 <= R2:R0
ILT Set R3:R1 equal to the result of R3:R1 < R2:R0
INE Set R3:R1 equal to the result of R3:R1 <> R2:R0

IANL Logically AND R3:R1 and R2:R0, store in R3:R1
IORL Logically OR R3:R1 and R2:R0, store in R3:R1
IXRL Logically XOR R3:R1 and R2:R0, store in R3:R1
ISHL Left-shift R3:R1 by R2:R0, store in R3:R1
ISHR Right-shift R3:R1 by R2:R0, store in R3:R1
IABS Absolute value of R2:R0

ISGN Determine sign of R2:R0 (-1, 0, 1)
INEG Negate value of R2:R0

Byte Variable Fetch/Store

A byte variable occupies one byte of internal RAM. To fetch the variable MYVAR# into R2:R0,
use this Assembly code:

Copyright A 1989-1995 Binary Technology, Inc. 99 Version 5.0

MOV R0,#BV_MYVAR
MOV A,@R0

 MOV R0,A
MOV R2,#0

If the byte variable is mapped to a control register (or if the byte variable's address is lower than
80H), use this code instead:

MOV R0,BV_MYVAR
MOV R2,#0

To store a value into a byte variable, use this Assembly code:

MOV R0,#BV_MYVAR
 MOV A,#VALUE

MOV @R0,A

If the byte variable is mapped to a control register (or if the byte variable's address is lower than
80H), use this code instead:

MOV BV_MYVAR,#VALUE

BXC-51 byte variable labels are prefixed by the compiler with BV_. For example, the byte

variable A# uses the label BV_A.

Static String Variable Fetch/Store

To obtain the address of a static string variable (assuming that the STRING statement has already
allocated string space), use the IST_CAL routine. For example,

MOV R3,#0
 MOV R1,#5
 CALL IST_CAL
 ; the string address of $(5) now in R3:R1

To store a string from ROM into a static string, put the address of the text to store into DPTR,
put the address of the static string variable in R3:R1, and call TQ2STR. For example,

MOV R3,#0 ; $(5)
 MOV R1,#5
 CALL IST_CAL

MOV DPTR,ROMSTR
CALL TQ2STR

Dynamic String Variable Fetch/Store

To obtain the address of a dynamic string's text, use the GETSTRADDR routine. For example,

MOV DPTR,#SV_A+2
 CALL GETSTRADDR

; R3:R1 now contains address and R5 contains length

Copyright A 1989-1995 Binary Technology, Inc. 100 Version 5.0

Be careful about changing the text of a string variable in memory. Do not increase the string's
length - it may overwrite portions of memory that manage dynamic strings which could cause a
crash.

To assign a new value to a string, store the length of the string at STRBUF and copy the text to
STRBUF+1, then call PUTSTR. For example,

; store length at STRBUF
MOV DPTR,#STRBUF
MOV A,#5 ; length
MOVX @DPTR,A
; copy string to STRBUF+1
...
; assign value
MOV DPTR,#SV_MYVAR
CALL PUTSTR

BXC-51 dynamic string variable labels are prefixed by the compiler with SV_. For example, the
dynamic string variable A$ uses the label SV_A.

Dynamic String Operators/Functions

A number of dynamic string functions are provided in the BASIC environment to perform string
operations. Here is the list.

Routine Function

SCONCAT Concatenate a string at R5;R3:R1 to STRBUF
SRIGHT Perform RIGHT$ on string at R5;R3:R1 starting at R2:R0
SLEFT Perform LEFT$ on string at R5;R3:R1 starting at R2:R0
SMID Perform LEFT$ on string at R5;R3:R1 starting at R7:R6 for

R2:R0 characters
SCHR Create 1 character string for character in R1

STRSTR Convert floating point value on A-Stack to string
STRCMP Compare string R4;R2:R0 to R5;R3:R1, result in R3:R1

For each of these string operations, the resulting string is put in R5;R3:R1.

Array Variable Fetch/Store

An array variable occupies 3 bytes which contains the array size and the memory address where
the array begins. To determine the address where an array index begins, put the variable size in
ARRSIZ (6 for floating point, 3 for dynamic string, 2 for integer), put the third byte of the array

variable's address in DPTR, the array index in R3:R1, and call AROFS. For example,

MOV ARRSIZ,#6
MOV DPTR,#AV_MYVAR+2
MOV R1,#7
MOV R3,#0 ; always 0
CALL AROFS
; floating point variables must be adjusted
CALL ADJARR

Copyright A 1989-1995 Binary Technology, Inc. 101 Version 5.0

; variable location now in R2:R0

To fetch or store a floating point variable, use the PUSHAS or POPAS routine described above
as "Floating Point Fetch/Store." To fetch or store an integer variable, use the IGETVAR and
IPUTVAR routine described above as "Integer Fetch/Store." For integer and dynamic string

variables, make sure ARRSIZ returns to 6 after calling AROFS. ARRSIZ is expected to be 6.

If the array has not been dimensioned yet, it will be dimensioned to 10.

Text Output to Serial Port

There are several routines for sending text to the serial port. How to output a floating point, an
integer, a static string, a dynamic string, a constant ROM string, and a single character is
explained below. In each case, the output goes to the currently defined output device, whether it
is the console, list device, or user-defined.

To print a floating point number, fetch the value onto the Argument Stack and call PRINT_FP.

This routine will output the top of the Argument Stack. For example,

 MOV R0,#LOW(V_MYVAR+5)
 MOV R2,#HIGH(V_MYVAR+5)
 CALL PUSHAS

CALL PRINT_FP

To print an integer number, place the integer in R2:R0, push it onto the A-Stack with
TWO_EYS, and then call PRINT_FP. The integer will be output as an signed integer from
-32768 to 0 to 32767. For example, to print 565,

 MOV R0,#LOW(565)
 MOV R2,#HIGH(565)
 CALL TWO_EYS

CALL PRINT_FP

To print a byte, place the byte in R0, place 0 in R2, push it onto the A-Stack with TWO_EYS,
and then call PRINT_FP. For example, to print 34,

 MOV R0,#34
 MOV R2,#0
 CALL TWO_EYS

CALL PRINT_FP

To print a static string, put the address of the string in R3:R1 and call UPRNT. This routine will
output a series of characters up to a carriage return. For example, to print out $(1),

MOV R1,#1
MOV R3,#0
MOV A,R1
CALL IST_CAL
CALL UPRNT

Copyright A 1989-1995 Binary Technology, Inc. 102 Version 5.0

To print a dynamic string, put the address of the string in R5;R3:R1 and call PRINT_DSTR. This
routine will output the characters located at R3:R1 for the length specified in R5. For example, to
print out A$,

MOV DPTR,#SV_A+2
 CALL GETSTRADDR

CALL PRINT_DSTR

To print a string of text from ROM, move the address of beginning of text to DPTR and call

ROM_P. This routine will output a series of characters up to a double quote character, ". For
example,

MOV DPTR,#MSG
CALL ROM_P
CALL CRLF
...

MSG: DB 'Hello, World!"'

To output a single character, put the character in R5 and call the TEROT routine. The character
in R5 will be output. For example, to output the letter A,

MOV R5,#'A'
CALL TEROT

Text Input from Serial Port

Either a character or a line of text may be input from the serial port. Call the INCHAR routine to
wait for a character to be received. It will be stored in the accumulator when it arrives.

CALL INCHAR
 ; wait for character

MOV DPTR,#100
MOVX @DPTR,A ; store at 100

Call the SINPUT routine to wait for a line of text (up to a carriage return) to be received. The
text line is stored in the BASIC input buffer starting at 0007H.

CALL SINPUT ; wait for a line
MOV DPTR,#4
MOVX A,@DPTR ; get line length
MOV DPTR,#7 ; input buffer
...

Simple Custom BASIC Command

BXC-51 V3.0 introduced a quick and simple way to link your Assembly code to your BXC-51
program using the DEFASM command. The DEFASM command allows you to specify a routine

at a particular address in memory. For example,

DEFASM CheckMeter@7700H

Copyright A 1989-1995 Binary Technology, Inc. 103 Version 5.0

specifies the Assembly routine for CheckMeter is located at 7700H in ROM. Use the
command CheckMeter instead of using CALL 7700H in your program. This is very handy
when you know the locations of your Assembly routines and those routine require no parameters

passed by BASIC. Parameters are typically setup by using XBY() and DBY() or using memory
mapped variables.

BXC-51 V5.0 allows the DEFASM command to specify the address as a label instead of a
hexadecimal specific address. This allows you to embed the Assembly code in your BASIC
program and not worry about getting its address correct. For example:

10 DEFASM CheckMeter@AR_CHECKMETER
20 GOTO 30 ; skip over Assembly code for time being
$ASM
AR_CHECKMETER:

MOV DPTR,#0F00H ; address of the meter
MOVX A,@DPTR ; get the current meter value
ANL A,#01FH ; strip off irrelevant bits
MOV BV_SETTING,A ; store in SETTING#
RET

$BASIC
30 CheckMeter ; call the Assembly routine
40 PRINT SETTING#

This example demonstrates using DEFASM to setup a subroutine at a label, adding the Assembly
subroutine in-line, and communicating the result back to the BASIC program by storing the result

in the BASIC byte variable SETTING#. When using in-line Assembly code for subroutines,
remember to place a GOTO statement before it so the subroutine is only called when desired.
Some engineers prefer to place all their Assembly code at the end of the program to keep it out of
the way of the BASIC code. In this case, use an END statement before the Assembly code.
Placement of in-line Assembly code is up to you.

BASIC Extensions through BXLs

As of BXC-51 V5.0, you may extend the BASIC command and function set similarly to the
extensions of the interpreter. But even better. Each BXL specifies code to execute at program
initialization and termination. Each BXL specifies new commands and new functions for BASIC.

Command and function code is only linked into the program if the command or function is used.

BXL means BASIC eXtension Library and refers to the file extension, .BXL. When the user

specifies -bfilename on the command line, the compiler opens the file named filename.BXL and
reads its BASIC extensions.

The BXL file contains mostly Assembly code to support the commands and functions it defines.
However, it also contains special keywords such as COMMAND and FUNCTION to clue the
compiler in to the extensions defined. Each COMMAND or FUNCTION defined has three

sections: initialization, termination, and execution. The initialization section is CALLed when the
BASIC program begins. The termination section is CALLed when the BASIC program exits
(whether exiting due to END, STOP, or error). The execution section is CALLed every time the

Copyright A 1989-1995 Binary Technology, Inc. 104 Version 5.0

BASIC source code uses the command or function. The initialization, termination, and execution
sections must RETurn to the BASIC program. A maximum of 16 parameters may be passed to a
command or function. Passed parameters may be floating point, integer, byte, bit, or string

values, however there are some limitations due to the number of registers that can contain
information.

If a BXL file defines an AUTO command, that code is not used as a BASIC extension. Instead,
the initialization and termination code will automatically be generated to the output file. This is
handy for initializing buffers or memory used by the commands and functions in the BXL. This is
also handy for starting and stopping I/O devices accessed by the defined commands. If the BXL

is used for a derivative microcontroller, the AUTO command is ideal for setting up and coding
interrupt handlers. For example,

COMMAND AUTO

INIT:
; just some EQU's for the commands

switch_addr EQU 0FFC1H

; we MUST return, otherwise program will hang
; upon startup
RET

END

All text in the BXL upto the first COMMAND or FUNCTION keyword is ignored. Each defined
COMMAND and FUNCTION contains three sections which each begin with a special Assembly
label: INIT, name, and EXIT (where name is the name of the command or function). A section
ends when another section, COMMAND, or FUNCTION begins. All text inside a section is
passed straight through to the Assembly output of the program. No syntax checking is

performed. However, CALL and JMP statements are reviewed to see if they refer to a BASIC
support library routine. If so, the compiler makes sure that routine is included when the BASIC
support library code is generated.

If you share your BXL files with other engineers, you should verify that all your defined
commands and functions can be compiled and run successfully. To be thorough, you should also
make sure that each command and function may be compiled and run successfully, separately. If
you devise a particularly clever or useful BXL, you may wish to sell it. If so and you wish to

encrypt your BXL, please contact your dealer for BXL-Encrypt, the BXL file encryption tool.

BASIC Command Extentions

Inside a BXL, each defined BASIC command begins with the keyword COMMAND as the first

word on the line. Following the COMMAND keyword is the name of the command and the
parameters (if any). The command name may not include any spaces in it. Each parameter is
specified as a name and type. Parameters are separated by spaces even though BASIC source
code will have commas separating them. The name has no functional use, but it is handy for
documentation purposes. The type can be any one of:

Copyright A 1989-1995 Binary Technology, Inc. 105 Version 5.0

Type BASIC Type Parameter passing method

fp floating point The input parameter is passed on the floating
point Argument Stack

int31 integer The input parameter is passed in R3 (high byte)

and R1 (low byte)

int20 integer The input parameter is passed in R2 (high byte)
and R0 (low byte)

int76 integer The input parameter is passed in R7 (high byte)
and R6 (low byte)

byte1 byte The input parameter is passed in R1

byte0 byte The input parameter is passed in R0

byte6 byte The input parameter is passed in R6

bitc bit The input parameter is passed in the Carry flag

(PSW.7)

string314 dynamic string The input parameter is passed in R3 (high byte
of string address), R1 (low byte of string
address), and R4 (length of string). The string
address is in external RAM

string205 dynamic string The input parameter is passed in R2 (high byte
of string address), R0 (low byte of string

address), and R5 (length of string). The string
address is in external RAM

The name is separated from the type by a colon. For example, this line begins the definition for a
command which takes two integers:

COMMAND FLASH light:int31 duration:int20

When the FLASH command is encountered in the BASIC source code, the compiler will expect
two integer parameters to follow. Anything different causes an error. For example, this would be
valid:

FLASH 3,length%*2

The parameters would be passed to the BXL code according to their types. The first parameter is
of type int31, so R3 would become 0 and R1 would become 3. Similarly, since the second

parameter is of type int20, the compiler would set R2 equal to HIGH(length%*2) and R0 equal to
LOW(length%*2). The immediate limitation that arises is that there are only 3 integer types, so
only three integer parameters may be present. Two integers going to the same type will cause one
of the integers to be clobbered. To circumvent this limitation, specify the fp type and use the
IFIX routine to pop a floating point value off A-Stack to return it in R3:R1.

Copyright A 1989-1995 Binary Technology, Inc. 106 Version 5.0

Stay alert when working with floating point parameters. The parameters are pushed on the stack
in the order they are evaluated. So, the last floating point value pushed is the first one to be
popped off the stack. Parameter evaluation proceeds from left to right. So, the rightmost floating

point parameter is popped first.

Immediately following the command should be three sections of code:

INIT:
; initialization code

name:
; code which executes the command

EXIT:
; termination code

The INIT and EXIT sections are optional. The text between these section headers is passed
straight through to the Assembly output along with any syntax errors that may be present. Use
the END keyword to end a section so the text between END and the next section is not copies
through to the Assembly output.

Here is an example COMMAND definition.

COMMAND LED number:byte1

; The single digit parameter to this command will
; be displayed on the 7 segment LED connected to
; Port 1. If -1 (or any number over 9) is passed
; as a parameter, the display is blanked.
;
; Example:
; LED 5
; will display a '5' on the 7 segment display

init:
; at startup, blank out the LED
MOV P1,#led_blank
RET

led:
MOV A,R1
CJNE A,#10,$+3
JC led_digit
; input not in range of 0-9, so blank display
MOV P1,#led_blank
RET

led_digit:
MOV DPTR,#led_table
MOVC A,@A+DPTR
MOV P1,A
RET

led_table:

Copyright A 1989-1995 Binary Technology, Inc. 107 Version 5.0

DB 00010000B ; 0
DB 11110100B ; 1
DB 01000001B ; 2
DB 11000000B ; 3
DB 10100100B ; 4
DB 10000010B ; 5
DB 00000010B ; 6
DB 11110000B ; 7
DB 00000000B ; 8
DB 10100000B ; 9

led_blank EQU 0FFh ; blank

exit:
; at exit, blank out the LED
MOV P1,#led_blank
RET

END ; end of command

BASIC Function Extentions

A function interfaces with the compiler to receive its input parameters identially to the way a
command does (see above). However, a function is required to return a value as well. Inside a
BXL, each defined BASIC function begins with the keyword FUNCTION as the first word on the
line. Following the FUNCTION keyword is the name and type of the function and the parameters
(if any). The command name may not include any spaces in it. Each parameter is specified as a

name and type. Parameters are separated by spaces even though BASIC source code will have
commas separating them. The parameter name has no functional use, but it is handy for
documentation purposes. The parameter type can be any one of fp, int31, int20, int76, byte1,
byte0, byte6, bitc, string314, and string205 (see the above section for type explanations). The
function type is a subset of parameter types. A function can return a value as type fp, int31,
byte1, bitc, or string315. The return type tells the compiler where to expect the result.

For example, to declare a function which takes two floating point values and returns an integer, it
would look like this:

FUNCTION BINS:int31 total:fp step:fp

When the BINS function is encountered in the BASIC source code, the compiler will expect two
floating point parameters to follow. Anything different causes an error. For example, this would
be valid:

a%= BINS(PI,.6)/4

The parameters would be passed to the BXL code according to their types. In this case, both
parameters would be pushed on the floating point stack, first PI and then .6. After the
appropriate code has analyzed the two parametes, a result in this example is expected in R3 and

R1. The compiler then generates code to divide that result by 4 before assigning it to the integer
variable a%.

Copyright A 1989-1995 Binary Technology, Inc. 108 Version 5.0

Other than returning a result, a function is identical to a command. See the Basic Command
Extension section above for more information.

Here is an example FUNCTION definition.

FUNCTION SWITCH:bitc switch_no:byte1
; This function reads the state of a switch
; located at FFC1. Each bit of the byte read
; represents one of 8 switches at this address.
; This function reads the current setting for
; one of the switches and returns that value
; (1 or 0). A valid switch number may be from
; 0 to 7.

SWITCH:
; the switch number is in R1
MOV A,R1 ; the switch #
CJNE A,#8,$+3 ; make sure valid switch #
JC $+3
RET ; switch # invalid, return 0
MOV DPTR,#switch_addr ; location of switch
MOVX A,@DPTR ; get it's current state
INC R1 ; shift right until bit
RRC A
DJNZ R1,$-1 ; bit 0 in accumulator
RET ; our return value is in Carry

END

Derivative Microcontroller Extentions

A BXL is an ideal way to support functionality specific to a derivative microcontroller. Place any
interrupt handlers in the COMMAND AUTO section. Any special commands or functions are
declared individually. All of this is provided to the engineering using the compiler without the

engineer specifying it with a command line option. The engineer specifies the microcontroller

type with the -tcpu command line option which reads the configuration for the microcontroller
which configures this BXL to be included.

The COMMAND AUTO section can do more than initialize the microcontorller's registers, it can
define the interrupt handlers. For example:

COMMAND AUTO
INIT:

; initialize microcontroller registers
RET

ivec_wd:
; handle the interrupt for wd
PUSH PSW
...
POP PSW
RETI

ivec_xyz:

Copyright A 1989-1995 Binary Technology, Inc. 109 Version 5.0

; handle the interrupt for xyz
PUSH PSW
...
POP PSW
RETI

EXIT:
; de-initialize microcontroller registers
RET

END

For this example, the labels ivec_wd and ivec_xyz would be specified in the .CPU file with
the INT command (see page 86).

For commands and functions that are specific to the derivative microcontroller, see the "Basic
Command Extension" and "Basic Function Extension" sections above.

BXL Programming Tips

When writing BXL code, keep these tips in mind:

Use unique label prefixes for all temporary or local labels. Assembly labels may be up to 32

characters long. Use three or more letters as a prefix, followed by underscore, to be safe,
for example, FLASH_JUMP:, FLASH_LOOP:, FLASH_EXIT:, etc.

Avoid using ORG. If you use ORG, remember the current program counter location and
recover it.

If the parameters are really integers and you have less than 4 integer parameters, use the
integer type. It generates faster code. Popping the floating point Argument Stack and
converting to an integer is a waste of time. Let the compiler determine if the value is
already an integer or if it needs to be converted to an integer.

Avoid referring to BASIC variables by label. You cannot be assured that the BASIC source

code uses the variable referenced. If the variable is not referenced in BASIC, the assembler
will report it as an undefined label.

Feel free to use register bank 0 and 3 as a scratch area. Feel free to use the accumulator, B
register, and DPTR without saving their contents.

If your commands or functions use common EQUates, place the EQUates in a COMMAND
AUTO section. Do not forget to RETurn from the INIT section, though.

If your commands or functions use common Assembly routines, specify those routines in
the COMMAND AUTO section (after RETurn from INIT).

Copyright A 1989-1995 Binary Technology, Inc. 110 Version 5.0

BXL functions do not use %, #, or $ to designate their type. Whether a function returns a
floating point, integer, byte, bit, or string, the function call is the same. For example,
MYFUNC(PARAM1, PARAM2).

Copyright A 1989-1995 Binary Technology, Inc. 111 Version 5.0

13. Microcontroller Summary

For your reference, this section provides a summary of the 8051/8052 microcontroller.

Special Function Registers

Symbol BASIC Variable Name Address

ACC* Accumulator 0E0H
B* B Register 0F0H
PSW* Program Status Word 0D0H
SP Stack Pointer 81H
DPTR Data Pointer (2 bytes)
 DPL Low byte 82H
 DPH High byte 83H
P0* PORT0# Port 0 80H

P1* PORT1# Port 1 90H
P2* PORT2# Port 2 0A0H
P3* PORT3# Port 3 0B0H
IP* IP# Interupt Priority Control 0B8H
IE* IE# Interupt Enable Control 0A8H
TMOD TMOD# Timer/Counter Mode Control 89H
TCON* TCON# Timer/Counter Control 88H
T2CON+* T2CON# Timer/Counter 2 Control 0C8H

TH0 TIMER0% Timer/Counter 0 High Byte 8CH
TL0 Timer/Counter 0 Low Byte 8AH
TH1 TIMER1% Timer/Counter 1 High Byte 8DH
TL1 Timer/Counter 1 Low Byte 8BH
TH2+ TIMER2% Timer/Counter 2 High Byte 0CDH
TL2+ Timer/Counter 2 Low Byte 0CCH
RCAP2H+ RCAP2% Timer/Counter 2 Capture Register High Byte 0CBH
RCAP2L+ Timer/Counter 2 Capture Register Low Byte 0CAH

SCON* Serial Control 98H
SBUF Serial Data Buffer 99H
PCON Power Control 87H

* Bit addressable
+ 8052 only

PSW: Program Status Word (0D0H)

CY AC F0 RS1 RS0 OV - P

CY PSW.7 Carry flag
AC PSW.6 Auxilary Carry flag

F0 PSW.5 General purpose Flag 0
RS1 PSW.4 Register Bank selector bit 1
RS0 PSW.3 Register Bank selector bit 0
OV PSW.2 Overflow flag

- PSW.1 User definable flag
P PSW.0 Parity flag

PCON: Power Control Register (87H)

SMOD - - - GF1 GF0 PD IDL

SMOD Double baud rate bit
- Reserved for future use

- Reserved for future use
- Reserved for future use

GF1 General purpose flag
GF0 General purpose flag
PD Power down bit

Copyright A 1989-1995 Binary Technology, Inc. 112 Version 5.0

IDL Idle Mode bit

IE: Interrupt Enable Register (0A8H)

EA - ET2 ES ET1 EX1 ET0 EX0

EA IE.7 Disable all interrupts if 0, enable individual interrupts if 1

- IE.6 Reserved for future use
ET2 IE.5 Enable Timer 2 overflow or capture interrupt (on 8052)
ES IE.4 Enable serial port interrupt

ET1 IE.3 Enable Timer 1 overflow interrupt
EX1 IE.2 Enable External Interrupt 1
ET0 IE.1 Enable Timer 0 overflow interrupt
EX0 IE.0 Enable External Interupt 0

IP: Interrupt Priority Register (0B8H)

- - PT2 PS PT1 PX1 PT0 PX0

- IP.7 Reserved for future use

- IP.6 Reserved for future use
PT2 IP.5 Timer 2 interrupt priority level (on 8052)
PS IP.4 Serial port interrupt priority level

PT1 IP.3 Timer 1 interrupt priority level
PX1 IP.2 External interrupt 1 priority level
PT0 IP.1 Timer 0 interrupt priority level
PX0 IP.0 External interrupt 0 priority level

TCON: Timer/Counter Control Register (88H)

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

TF1 TCON.7 Timer 1 overflow flag. Set by hardware when Timer/Counter 1 overflows. Cleared by
hardware as processor vectors to the interrupt service routine

TR1 TCON.6 Timer 1 run control bit. Set/Cleared by software to turn Timer/Counter 1 on/off
TF0 TCON.5 Timer 0 overflow flag. Set by hardware when Timer/Counter 0 overflows. Cleared by

hardware as processor vectors to the interrupt service routine
TR0 TCON.4 Timer 0 run control bit. Set/Cleared by software to turn Timer/Counter 0 on/off
IE1 TCON.3 External Interrupt 1 edge flag. Set by hardware when External Interrupt edge is detected.

Cleared by hardware when interrupt is processed

IT1 TCON.2 External Interrupt 1 type control bit. Set/Cleared by software to specify falling edge/low
level triggered external interrupt

IE0 TCON.1 External Interrupt 0 edge flag. Set by hardware when External Interrupt edge is detected.
Cleared by hardware when interrupt is processed

IT0 TCON.0 External Interrupt 0 type control bit. Set/Cleared by software to specify falling edge/low
level triggered external interrupt

TMOD: Timer/Counter Mode Control Register (89H)

GATE C/T M1 M0 GATE C/T M1 M0

GATE When TRx (in TCON) is set and GATE=1, Timer/Counterx will run only while INTx pin

is high (hardware control). When GATE=0, Timer/Counterx will run only while TRx=1
(software control)

C/T Timer or Counter selector. Cleared for Timer operation (input from internal system clock).

Set for Counter operation (input from Tx input pin)

M1, M0 Mode=00, 5-bit timer prescaler (MCS-48 compatible)
Mode=01, 16-bit timer/counter
Mode=10, 8-bit auto-reload timer/counter
Mode=11, (Timer 0) TL0 is an 8-bit timer/counter controlled by the standard Timer 0

control bits, TH0 is an 8-bit timer and is controlled by Timer 1 control bits
Mode=11, (Timer 1) Timer/Counter 1 stopped

T2CON: Timer/Counter 2 Control Register (0C8H)

TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2 CP/RL2

TF2 T2CON.7 Timer 2 overflow flag set by hardware and cleared by software. TF2 cannot be set when
either RCLK=1 or CLK=1

Copyright A 1989-1995 Binary Technology, Inc. 113 Version 5.0

EXF2 T2CON.6 Timer 2 external flag set when either a capture or reload is caused by a negative transition
on T2EX when EXEN2=1. When Timer 2 interrupt is enabled, EXF2=1 will cause the
CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software

RCLK T2CON.5 Receive clock flag. When set, causes the Serial Port to use Timer 2 overflow pulses for its
receive clock in modes 1 & 3. RCLK=0 causes Timer 1 overflow to be used for the receive
clock.

TCLK T2CON.4 Transmit clock flag. When set, causes the Serial Port to use Timer 2 overflow pulses for its
transmit clock in modes 1 & 3. TCLK=0 causes Timer 1 overflows to be used for the
transmit clock.

EXEN2 T2CON.3 Timer 2 external enable flag. When set, allows a capture or reload to occur as a result of
negative transition on T2EX if Timer 2 is not being used to clock the Serial Port.

EXEN2=0 causes Timer 2 to ignore events at T2EX
TR2 T2CON.2 Software start/stop control for Timer 2. A logic 1 starts the timer
C/T2 T2CON.1 Timer(0) or Counter(1) select

CP/RL2 T2CON.0 Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if
EXEN2=1. When cleared, auto-reloads will occur either with Timer 2 overflows or this bit
is ignored and the Timer is forced to auto-reload on Timer 2 overflow

SCON: Serial Port Control Register (98H)

SM0 SM1 SM2 REN TB8 RB8 TI RI

SM0 SM1 SCON.7 SCON.6 Mode=0, Shift Register, Fosc/12 baud

Mode=1, 8-bit UART, Variable baud
Mode=2, 9-bit UART, Fosc/64 or Fosc/32
Mode=3, 9-bit UART, Variable

SM2 SCON.5 Enables the multiprocessor communication feature in modes 2 & 3. In mode 2 or 3, if SM2
is set to 1 then RI will not be activitated if the received 9th data bit (RB8) is 0. In mode 1,
if SM2=1 then RI will not be activated if a valid stop bit was not received. In mode 0, SM2
should be 0.

REN SCON.4 Set/Cleared by software to enable/disable reception

TB8 SCON.3 The 9th bit that will be transmitted in modes 2 & 3. Set/Cleared by software
RB8 SCON.2 In modes 2 & 3, is the 9th data bit that was received. In mode 1, if SM2=0, RB8 is the stop

bit that was received. In mode 0, RB8 is not used
TI SCON.1 Transmit interrupt flag. Set by hardware at the end of the 8th bit time in mode 0, or at the

beginning of the stop bit in other modes. Must be cleared by software
RI SCON.0 Receive interrupt flag. Set by hardware at the end of the 8th bit time in mode 0, or halfway

through the stop bit time in other modes (except see SM2). Must be cleared by software

Instruction Set Summary

Mnemonic
Operation

Flags
P OV AC C

Function

ACALL addr11
(PC) j (PC) + 2

(SP) j (SP) + 1
((SP)) j (PC7-0)
(SP) j (SP) + 1
((SP) j (PC15-8)
(PC10-0) j page addr

Absolute Call

ADD A,Rn
(A) j (A) + (Rn)

P OV AC C Add

ADD A,direct

(A) j (A) + (direct)

P OV AC C Add

ADD A,@Ri
(A) j (A) + ((Ri))

P OV AC C Add

ADD A,#data
(A) j (A) + #data

P OV AC C Add

ADDC A,Rn
(A) j (A) + (C) + (Rn)

P OV AC C Add with Carry

ADDC A,direct

(A) j (A) + (C) + (direct)

P OV AC C Add with Carry

Copyright A 1989-1995 Binary Technology, Inc. 114 Version 5.0

Mnemonic
Operation

Flags
P OV AC C

Function

ADDC A,@Ri

(A) j (A) + (C) + ((Ri))

P OV AC C Add with Carry

ADDC A,#data
(A) j (A) + (C) + #data

P OV AC C Add with Carry

AJMP addr11
(PC) j (PC) + 2
(PC10-0) j page addr

Absolute Jump

ANL A,Rn
(A) j (A) ^ (Rn)

P Logical-AND for byte variables

ANL A,direct
(A) j (A) ^ (direct)

P Logical-AND for byte variables

ANL A,@Ri
(A) j (A) ^ ((Ri))

P Logical-AND for byte variables

ANL A,#data
(A) j (A) ^ #data

P Logical-AND for byte variables

ANL direct,A
(direct) j (direct) ^ (A)

Logical-AND for byte variables

ANL C,bit
(C) j (C) ^ (bit)

 C Logical-AND for bit variables

ANL C,/bit
(C) j (C) ^ /(bit)

 C Logical-AND for bit variables

CJNE A,direct,rel
(PC) j (PC) + 3
IF (A) <> (direct)
THEN

 (PC) j (PC) + rel
IF (A) < (direct)
THEN
 (C) j 1
ELSE
 (C) j 0

 C Compare and Jump if Not Equal

CJNE A,#data,rel
(PC) j (PC) + 3

IF (A) <> data
THEN
 (PC) j (PC) + rel
IF (A) < data
THEN
 (C) j 1
ELSE
 (C) j 0

 C Compare and Jump if Not Equal

CJNE Rn,#data,rel
(PC) j (PC) + 3
IF (Rn) <> data
THEN
 (PC) j (PC) + rel
IF (Rn) < data
THEN
 (C) j 1

ELSE
 (C) j 0

 C Compare and Jump if Not Equal

CJNE @Ri,#data,rel
(PC) j (PC) + 3
IF ((Ri)) <> data
THEN
 (PC) j (PC) + rel
IF ((Ri)) < data

THEN
 (C) j 1
ELSE
 (C) j 0

 C Compare and Jump if Not Equal

Copyright A 1989-1995 Binary Technology, Inc. 115 Version 5.0

Mnemonic
Operation

Flags
P OV AC C

Function

CLR A

(A) j 0

P Clear Accumulator

CLR C
(C) j 0

 C Clear Carry Flag

CLR bit
(bit) j 0

Clear Bit

CPL A
(A) j ~(A)

P Complement Accumulator

CPL C

(C) j ~(C)

 C Complement Carry Flag

CPL bit
(bit) j ~(bit)

Complement Bit

DA A
- ACC contents BCD
IF [[(A3-0) > 9] V [(AC) = 1]]
 THEN (A3-0)j(A3-0)+6
 AND

IF [[(A7-4) > 9] V [(C) = 1]]
 THEN (A7-4)j(A7-4)+6

P C Decimal-adjust Accumulator for Addition

DEC A
(A) j (A) - 1

P Decrement Accumulator

DEC Rn
(Rn) j (Rn) - 1

Decrement Register

DEC direct
(direct) j (direct) - 1

Decrement

DEC @Ri
(Ri) j (Ri) - 1

Decrement

DIV AB
(A) j (A)/(B)
(B) j (A) mod (B)

P OV C Divide

DJNZ Rn,rel
(PC) j (PC) + 2
(Rn) j (Rn) - 1

IF (Rn) > 0 or (Rn) < 0
 THEN
 (PC) j (PC) + rel

Decrement and Jump if Not Zero

DJNZ direct,rel
(PC) j (PC) + 2
(Rn) j (Rn) - 1
IF (direct) > 0 or (direct) < 0
 THEN

 (PC) j (PC) + rel

Decrement and Jump if Not Zero

INC A
(A) j (A) + 1

P Increment Accumulator

INC Rn
(Rn) j (Rn) + 1

Increment Register

INC direct
(direct) j (direct) + 1

Increment

INC @Ri

(Ri) j (Ri) + 1

Increment

INC DPTR
(DPTR) j (DPTR) + 1

Increment Data Pointer

JB bit,rel
(PC) j (PC) + 3
IF (bit) = 1
 THEN
 (PC) j (PC) + rel

Jump if Bit Set

Copyright A 1989-1995 Binary Technology, Inc. 116 Version 5.0

Mnemonic
Operation

Flags
P OV AC C

Function

JBC bit,rel

(PC) j (PC) + 3
IF (bit) = 1
 THEN
 (bit) j 0
 (PC) j (PC) + rel

Jump if Bit is Set and Clear Bit

JC rel
(PC) j (PC) + 2
IF (C) = 1

 THEN
 (PC) j (PC) + rel

Jump if Carry Set

JMP @A+DPTR
(PC) j (A) + (DPTR)

Jump Indirect

JNB bit,rel
(PC) j (PC) + 3
IF (bit) = 0
 THEN

 (PC) j (PC) + rel

Jump if Bit Not Set

JNC rel
(PC) j (PC) + 2
IF (C) = 0
 THEN
 (PC) j (PC) + rel

Jump if Carry Not Set

JNZ rel
(PC) j (PC) + 2

IF (A) <> 0
 THEN
 (PC) j (PC) + rel

Jump if Accumulator Not Zero

JZ rel
(PC) j (PC) + 2
IF (A) = 0
 THEN
 (PC) j (PC) + rel

Jump if Accumulator Zero

LCALL addr16
(PC) j (PC) + 3
(SP) j (SP) + 1
((SP)) j (PC7-0)
(SP) j (SP) + 1
((SP)) j (PC15-8)
(PC) j addr15-0

Long Call

LJMP addr16

(PC) j addr15-0

Long Jump

MOV A,Rn
(A) j (Rn)

P Move Byte

MOV A,direct
(A) j (direct)

P Move Byte

MOV A,@Ri
(A) j ((Ri))

P Move Byte

MOV A,#data

(A) j #data

P Move Byte

MOV Rn,A
(Rn) j (A)

Move Byte

MOV Rn,direct
(Rn) j (direct)

Move Byte

MOV Rn,#data
(Rn) j #data

Move Byte

MOV direct,A

(direct) j (A)

Move Byte

Copyright A 1989-1995 Binary Technology, Inc. 117 Version 5.0

Mnemonic
Operation

Flags
P OV AC C

Function

MOV direct,Rn

(Rn) j (direct)

Move Byte

MOV direct,direct
(direct) j (direct)

Move Byte

MOV direct,@Ri
(direct) j ((Ri))

Move Byte

MOV direct,#data
(direct) j #data

Move Byte

MOV @Ri,A

((Ri)) j (A)

Move Byte

MOV @Ri,direct
((Ri)) j (direct)

Move Byte

MOV @Ri,#data
((Ri)) j #data

Move Byte

MOV C,bit
(C) j (bit)

 C Move Bit to Carry

MOV bit,C

(bit) j (C)

Move Carry to Bit

MOV DPTR,#data
(DPTR) j #data

Move Value to Data Pointer

MOVC A,@A+DPTR
(A) j ((A) + (DPTR))

P Move Code Byte

MOVC A,@A+PC
(A) j ((A) + (PC))

P Move Code Byte

MOVX A,@Ri

(A) j ((Ri))

P Move External Byte

MOVX A,@DPTR
(A) j ((DPTR))

P Move External Byte

MOVX @Ri,A
((Ri)) j (A)

Move External Byte

MOVX @DPTR,A
((DPTR)) j (A)

Move External Byte

MUL AB

(A)7-0 (B)15-8 j (A)X(B)

P OV C Multiply

NOP
(PC) j (PC) + 1

No Operation

ORL A,Rn
(A) j (A) V (Rn)

P Logical-OR a Byte

ORL A,direct
(A) j (A) V (direct)

P Logical-OR a Byte

ORL A,@Ri

(A) j (A) V ((Ri))

P Logical-OR a Byte

ORL A,#data
(A) j (A) V #data

P Logical-OR a Byte

ORL direct,A
(direct) j (direct) V (A)

Logical-OR a Byte

ORL direct,#data
(direct) j (direct) V #data

Logical-OR a Byte

ORL C,bit

(A) j (A) V (bit)

 C Logical-OR a Bit

ORL C,/bit
(A) j (A) V /(bit)

 C Logical-OR a Bit

POP direct
(direct) j ((SP))
(SP j (SP) - 1

Pop from Stack

Copyright A 1989-1995 Binary Technology, Inc. 118 Version 5.0

Mnemonic
Operation

Flags
P OV AC C

Function

PUSH direct

(SP) j (SP) + 1
((SP)) j (direct)

Push to Stack

RET
(PC15-8) j ((SP))
(SP) j (SP) - 1
(PC7-0) j ((SP))
(SP) j (SP) - 1

Return from Subroutine

RETI

(PC15-8) j ((SP))
(SP) j (SP) - 1
(PC7-0) j ((SP))
(SP) j (SP) - 1

Return from Interrupt Subroutine

RL A

(An+1) j (An) ∀ n=0-6

(A0) j (A7)

Rotate Accumulator Left

RLC A

(An+1) j (An) ∀ n=0-6

(A0) j (C)
(C) j (A7)

P C Rotate Accumulator Left Through the Carry Flag

RR A

(An) j (An+1) ∀ n=0-6

(A7) j (A0)

Rotate Accumulator Right

RRC A

(An) j (An+1) ∀ n=0-6

(A7) j (C)
(C) j (A0)

P C Rotate Accumulator Right Through the Carry Flag

SETB C
(C) j 1

Set Carry Bit

SETB bit
(bit) j 1

Set Bit

SJMP rel

(PC) j (PC) + 2
(PC) j (PC) + rel

Short Jump

SUBB A,Rn
(A) j (A) - (C) - (Rn)

P OV AC C Subtract with Borrow

SUBB A,direct
(A) j (A) - (C) - (direct)

P OV AC C Subtract with Borrow

SUBB A,@Ri
(A) j (A) - (C) - ((Ri))

P OV AC C Subtract with Borrow

SUBB A,#data
(A) j (A) - (C) - #data

P OV AC C Subtract with Borrow

SWAP A
(A3-0) ji (A7-4)

Swap Nibbles Within Accumulator

XCH A,Rn
(A) ji (Rn)

P Exchange Accumulator with Byte

XCH A,direct
(A) ji (direct)

P Exchange Accumulator with Byte

XCH A,@Ri
(A) ji ((Ri))

P Exchange Accumulator with Byte

XCHD A,@Ri
(A3-0) ji ((Ri)3-0)

P Exchange Digit

XRL A,Rn
(A) j (A) ox (Rn)

P Logical Exclusive-OR Byte

XRL A,direct
(A) j (A) ox (direct)

P Logical Exclusive-OR Byte

Copyright A 1989-1995 Binary Technology, Inc. 119 Version 5.0

Mnemonic
Operation

Flags
P OV AC C

Function

XRL A,@Ri

(A) j (A) ox ((Ri))

P Logical Exclusive-OR Byte

XRL A,#data
(A) j (A) ox #data

P Logical Exclusive-OR Byte

XRL direct,A
(direct) j (direct) ox (A)

Logical Exclusive-OR Byte

XRL direct,#data
(direct) j (direct) ox #data

Logical Exclusive-OR Byte

Copyright A 1989-1995 Binary Technology, Inc. 120 Version 5.0

14. BASIC Lanuguage Summary

BASIC Commands Summary

BAUD Set printer port baud rate
CALL Call assembly routine by address

CLEAR Clear all variables, arrays, and interrupts
CLEARI Clear all interrupts
CLEARS Clear stack space
CLOCK0 Turn real-time clock off
CLOCK1 Turn real-time clock on

 CTRLC0 Disable control-C usage

 CTRLC1 Enable control-C usage
DEFASM

Declare an assembly routine as a BASIC keyword
DEFCTRL

Declare a control register as a byte variable
DEFFN Declare a user-defined function

DEFVAR
Declare a variable at a specific memory address

DIM Dimension an array
DISABLE intr

Disable derivative microcontroller interrupt
DO...UNTIL

Loop until a certain condition arises
DO...WHILE

Loop while a condition is true
ENABLE intr

Enable derivative microcontroller interrupt
END Halt program execution normally

FOR...NEXT
Loop with an index variable a finite number of times

GOSUB...RETURN
Call a BASIC subroutine

GOTO Jump to another line of BASIC
IDLE Wait for an interrupt to occur

IF...THEN...ELSE
Conditionally execute a statement

INPUT Input information from user
LD@ Push a floating point value on the stack from memory
LET Assign an expression to a variable
NULL Configure NULs to be sent after carriage return

ONERR If a program error occurs, GOTO a BASIC subroutine
ONEX1 If external interrupt 1 occurs, GOSUB a BASIC subroutine

Copyright A 1989-1995 Binary Technology, Inc. 121 Version 5.0

ON GOTO
On an index, GOTO a BASIC line

ON GOSUB

On an index, GOSUB a BASIC line
ONTIME If a timer interrupt occurs, GOSUB a BASIC subroutine
ONintr On a derivative microcontroller interrupt, GOSUB a subroutine
PGM Program an EPROM
PH0. PRINT, outputting numbers in hexadecimal
PH0.@ PH0 . to a user defined output driver

PH0.# PH0 . to the list device
PH1. PRINT, outputting numbers in hexadecimal with leading zeros
PH1.@ PH1. to a user defined output driver
PH1.# PH1. to the list device
POP Pop value(s) off the top of the floating point argument stack
PRINT Output text, numbers, and strings to console device

PRINT@ PRINT to a user defined output driver
PRINT# PRINT to the list device
PUSH Push a value on the floating point argument stack
PWM Pulse width modulation - sound generator
READ...DATA

Read a value from a DATA statement with expression(s)

REM or ; A comment
RESTORE

Mark all DATA as unread
RETI RETURN from ONTIME or ONEX1
SBUFFER size

Specifiy serial buffer size

SBUFFER OFF
Disable serial buffering

SBUFFER ON
Enable serial buffering

SBUFFER NOECHO
Disable user keystroke echo

SBUFFER ECHO
Enable user keystroke echo

ST@ Pop a value off floating point argument stack to memory
STOP Abort program execution with a message
STRING Allocate string storage space
TRACE0 Turn off line number tracing

TRACE1 Turn on line number tracing
UI0 Turn off user defined console input routines
UI1 Turn on user defined console input routines
UO0 Turn off user defined console output routines
UO1 Turn on user defined console output routines

Copyright A 1989-1995 Binary Technology, Inc. 122 Version 5.0

BASIC Functions Summary

ABS(x) Return the absolute value of x
ASC(c) Return the ASCII code for character c
ASC(s) Return the ASCII code at beginning of string s
ASC($(n),x)

Return the ASCII code for a character in string n
ATN(x) Return the arctangent of x
CBY(x) Return byte value from program memory (ROM)
CHR$(c) Return string of ASCII code c
COS(x) Return the cosine of x
DBY(x) Return/Set contents of internal memory

EXP(x) Return the value of e raised to the x
HIGH(x) Return high byte value of x
INT(x) Return integer part of x
LEFT$(s,n)

Return left most n characters of string
LEN(s) Return length of string s

LOG(x) Return natural logarithm of x
LOW(x) Return low byte value of x
MID$(s,n,m)

Return range of characters in middle of string s
NOT(x) Return the logical NOT of x (1's complement)
RIGHT$(s,n)

Return rightmost characters of string s
SGN(x) Return sign of x
SIN(x) Return sine of x
STR$(n) Convert a number n to a dynamic string
SQR(x) Return square root of x
TAN(x) Return tangent of x

VAL(s) Convert a string to a number
XBY(x) Return/Set contents of external memory (RAM)

BASIC Special Variables Summary

ERRLINE%
Line number of last error

ERRVALUE%
Error code of last error

FALSE Return logical false, 0
FREE Return the amount of RAM left

GET Return current character on console
IE Return/Set value of interrupt enable register
IP Return/Set value of interrupt priority register
LEN Return length of program

Copyright A 1989-1995 Binary Technology, Inc. 123 Version 5.0

MCON# Return/set value of memory control reg.
MTOP Return/Set the top of memory
PCON Return/Set the power control register

PI Return the value of π
PORT0# Return/Set value of P0 I/O port
PORT1 Return/Set value of P1 I/O port
PORT2# Return/Set value of P2 I/O port
PORT3# Return/Set value of P3 I/O port
RAMORG

Return starting location of RAM

RCAP2 Return/Set value for timer 2's reload/capture registers
RND Return a random number
ROMORG

Return starting location of program (ROM)
T2CON Return/Set value of timer/counter 2 control register
TCON Return/Set value of timer/counter control register

TIME Return/Set value of real-time clock
TIMER0 Return/Set value of timer/counter 0
TIMER1 Return/Set value of timer/counter 1
TIMER2 Return/Set value of timer/counter 2
TMOD Return/Set timer/counter mode control register
TRUE Return logical true, -1

XTAL Return/Set value of system clock speed, in Hz

Operator Summary

+ addition

 - subtraction
 * multiplication
 / division
 ** exponentiation (not allowed for integer expressions)
 .AND. logical AND
 .OR. logical OR

 .XOR. logical XOR
 .SHL. bit-shift left
 .SHR. bit-shift right
 = test for equality
 < test for less than
 > test for greater than

 <= test for less than or equal to
 >= test for greater than or equal to
 <> test for inequality

Copyright A 1989-1995 Binary Technology, Inc. 124 Version 5.0

15. Command Line Options

All the command line options for BXC-51 are optional. To deviate from the compiler's defaults,

use as many of the options listed below as needed.

Make sure all options precede the BASIC file name. If an option is accompanied by a hex address
addr, a file name name, a baud rate rate, or microcontroller name cpu, make sure there is no

space between the option letter and the item; for example, -b1200 for 1200 baud.

Debugging On

-g Debugging is normally off. Certain run-time errors will be reported if you specify

the -g option. For example, if byte values are expected and a larger value is
provided (such as an array or string index), the upper byte will be ignored.

However, if the -g option is specified, a BAD ARGUMENT error will occur.

Code generated with the -g option will be larger than code without it. If you use

the TRACE1 command, the -g option will allow you to trace each statement rather

than just line changes.

Error Trapping On

-e By default, error trapping via ONERR traps only arithmetic errors. Specify the -e
option to trap all errors. This traps A-STACK, C-STACK, NO DATA, I-STACK,
MEMORY ALLOCATION, errors etc. Use carefully! See the ONERR statement
(on page 28) for more information. When used in conjunction with the -2
command line option, not all errors can be trapped. When an error is detected in

interpreter code, the compiler cannot intercept it.

Line Numbers Off

-l When compiling your code, the BASIC source code line numbers are encoded into
the assembly to facilitate error tracking. This generates extra bytes of code. To

save space in final versions of code, specify the -l option. The TRACE command

does not work with the -l option.

Specify the Beginning of Code (ROM)

-paddr Without this option, code is generated beginning at address 0H in code memory.

With -p and no value specified, 0H is assumed. With this option, your code may
be relocated to another location, addr. At 0H, interrupt handling must be
performed; elsewhere, a dummy interrupt space is coded except for external

interrupt 1 (at addr+13H) and timer overflow 0 (at addr+1BH). If your program

uses the real-time clock or ONEX1 and your program does not start at 0H, you

must route the appropriate vectors up to your BASIC program so they can be

properly handled. (addr is specified in hexadecimal). There are very few reasons
(except for debugging with a monitor) for locating program code anywhere but
address 0. The microcontroller always begins execution at address 0 upon reset.

Copyright A 1989-1995 Binary Technology, Inc. 125 Version 5.0

Specify the Beginning of Variables (RAM)

-vaddr Without the -vaddr option, variables are assumed to start at 0H. With -v and no
value specified, 0 is assumed. Use this option to change the starting location of

the bottom of RAM usable by this program. This RAM space contains the system
parameters, Control Stack, floating point Argument Stack, and program variables.
The system variable space starts at addr, the user variable space typically starts at
addr+200H. addr is specified in hexadecimal.

If you specify the -2i option as well, the system variable space starts at 0H,
regardless of the value of addr. If addr is not at 0H, the addr specifies the
beginning of user variable space (not addr + 200H).

Specify the Upper Limit of Variables (RAM)

-uaddr With no upper limit, your program tries to determine the size of RAM by clearing
RAM until it hits unsocketed RAM or E000H, whichever comes first. With

-uaddr and no value specified, E000H is the default. If your RAM is always a

fixed size or if you wish higher RAM to remain untouched, use the -uaddr option

to set the limit. The limit is inclusive to the RAM size. If -u6000 is specified,
BASIC will never initialize locations 6001H and up. addr is specified in

hexadecimal. MTOP is set to this value when the program starts (unless the -2i or

-sub option is present.)

Specify User Console I/O and Stray Interrupts

-caddr Without the -caddr option (or with -c and no value specified), user console I/O
and stray interrupts are assumed to start at 4000H. With this option, you specify
where these routines start instead. If addr is 0H, then user console I/O and stray
interrupts are ignored. This affects the UI1, UI0, UO0, and PRINT@ commands.

The -c0 option reduces final code size. For large programs, you may wish to use
this option so the stray interrupt code does not overlap with your BASIC code
located around 4000H.

User console, I/O and stray interrupt locations:

Location Function
addr+03H
Stray EXT0 interrupt

addr+0BH
Stray Timer 0 overflow interrupt
addr+13H
Stray EXT1 interrupt
addr+1BH
Timer1 overflow interrupt

addr+23H
Serial Port interrupt
addr+2BH
Timer2 overflow interrupt

Copyright A 1989-1995 Binary Technology, Inc. 126 Version 5.0

addr+30H
User console output character routine (see UO1, page 42)
addr+33H

User console input character routine (see UI1, page 41)
addr+36H
User console input ready routine (see UI1, page 41)
addr+39H
User reset routine
addr+3CH

User PRINT@ routine (see PRINT@, page 33)

Compile with BASIC Extensions (BXL)

-bbxl When writing BASIC source code that depends upon BASIC extensions defined in
a BXL (see page 104), inform the compiler with this command line option.
Without this command line option, command extensions become syntax errors and
function extensions become array variables. Multiple BXL's may be specified in

multiple command line options. Note that if the BASIC program does not use any
extension defined in the BXL, the compiler extracts no code from the BXL.

Compile into Subroutine

-sub Normally BXC-51 creates a complete assembly program that includes complete
microcontroller initialization. To create just an assembly routine which may be
CALLed from the MCS BASIC-52 interpreter or from another program, use the

-sub option. See the section "Converting Your BASIC Program Into a
Subroutine" on page 67 for more information.

Generate Code for 8051/31

-1 This is a default command line option. The target program assumes your hardware
has the capabilities of an 8051/31 with no interpreter present. It assumes that the
board is not initialized and RAM must be cleared. Because the 8051/31

microcontrollers have only two counter/timers, the PGM and PWM statements
may conflict with use of the real-time clock (CLOCK0/CLOCK1). See the

command explanations for more details. Alternate options are -2, -2i, -5, or -tcpu.

Generate Code for 8052/32

-2 BXC-51 assumes your hardware has the capabilities of an 8051/31. If your
program uses the 8052/32 microcontrollers, you must specify this option. Trying

to use 8052/32 capabilities without the -2 option will cause BXC-51 to generate
errors and warnings. This option does not assume that the BASIC-52 interpreter
is present and enabled, so an Assembly support library will be included in your
program. Because the 8051/31 microcontrollers have only two counter/timers, the
PGM and PWM statements may conflict with use of the real-time clock
(CLOCK0/CLOCK1). See the command explanations for more details.

Copyright A 1989-1995 Binary Technology, Inc. 127 Version 5.0

Generate Code for Use with MCS BASIC-52 Interpreter

-2i Normally BXC-51 generates all the assembly code for the 8051/31 as a complete
standalone program. However, if you have an 8052 microcontroller with the MCS

BASIC-52 interpreter active, BXC-51 generates much less code by utilizing the

interpreter's ROM by specifying -2i. For important additional information about

using the -2i command line option, see the section "BXC-51 programs coexisting

with MCS BASIC-52" on page 70. You may use the -sub command line option to
create a subroutine to CALL your BXC-51 program from a BASIC program

running in the interpreter. The -2i option forces other options to be ignored by

BXC-51 (-brate, -w, -iaddr, and -caddr) because the interpreter overrides them.

Generate Code for DS5000

-5 If your target microcontroller has a Dallas Semiconductor DS5000
microcontroller, specify this option. This option forces BXC-51 to do all external
RAM references through DPTR, leaving Port 2 alone. Additionally, the MCON#

variable is defined.

Generate Code for Derivative Microcontroller

-tcpu If your target microcontroller is a derivative microcontroller specially configured in
the file cpu.CPU or BXC51.CPU, specify this option with the appropriate cpu
name. Microcontrollers in the 8051 family are supported through special
configuration. This support allows BASIC source code to reference additional

special variables, handle additional interrupts, and possibly use command and
function extensions to BASIC that are specific to cpu. As shipped, BXC-51
supports the 8xC550 and 8xC552. See the section "8051 Microcontroller
Configuration Commands" on page 84 for details.

Specifying a Different Output Filename

-oname When BXC-51 compiles your BASIC (.BAS) file, it generates two output files:

one with the file extension .ASM and the other with a .HEX file extension. The
base filename is the same as the source code file. However, if you want your

.ASM and .HEX files to have a different base filename, use the -oname option.
For example, if your program name is SEEBAUD.BAS, you will have
SEEBAUD.ASM and SEEBAUD.HEX after running BXC-51. By specifying

-oOUT, BXC-51 generates the two files OUT.ASM and OUT.HEX.

Code Generation Only

-s To make BXC-51 generate Assembly code but not assemble it, use the -s option.
Normally, BXC-51 will invoke SXA51 to assemble your code upon successful
compilation. This option is useful for examining or modifying the generated code
prior to assembly.

Long Assembly Listing

-a To make SXA51 generate a long Assembly list file in a .LST file, specify the -a

option. This option instructs BXC-51 to pass the -l flag to SXA51. This option

does not work with the -s option.

Copyright A 1989-1995 Binary Technology, Inc. 128 Version 5.0

Additional Assembler Options

-aopt To pass additional options to the assembler, use this option. Any text (without
spaces) specified as opt will be passed to the assembly as a command line option.

This option may be specified multiple times.

Invoke Simulator Upon Successful Compile

-sim To invoke a simulator after successfully assembling the BASIC source code,
specify this option. The assembler SXA51 invokes the simulator using the
command in the DOS environment variable SIM51. If SIM51 is undefined,
BXCSIM is assumed (for the BXC-51 Simulator available from Binary

Technology, Inc.) Any program can be specified, not just a simulator. The
program is invoked with the .HEX or .LST file as the last command line
parameter.

Generate Memory Map

-mname By default, no memory map is generated. Use this option to create a .MAP file
that lists all of your variables, their memory locations, their sizes, and their types of

memory (XRAM for external RAM, IRAM for internal RAM). If name is not
specified, it defaults to the output file's name with the file extension .MAP.

Allow User Reset (at 2090H)

-r When MCS BASIC-52 interpreter first starts up, location 2001H is checked for
the value AAH. If the value is present, a user reset occurs by CALLing 2090H.
Since this is not always desirable in a program, it is an option. The user reset is

called after the SCON, TMOD, TCON, and T2CON registers have been initialized
to their defaults and before anything else (such as memory clear) has occurred.

Automatically Setting The Baud

-brate When creating a standalone program, it needs to know the baud rate. Normally, it
waits for the user to hit the space bar to calculate the baud rate. If you specify a
baud rate with this option, the rate will automatically be set and you will not need
to hit space. With -b and no value specified, 1200 baud is the default. This is a

substitute for the BASIC-52 interpreter's PROG1 or PROG2 command. No error
checking is performed on your rate so preposterous rates could cause

communications problems. -b also allows you the freedom of using any baud rate

that your host machine might have. With the -2i option, the baud rate is assumed
to have been set by the interpreter.

User Initialization Routine

-iaddr Once the complete BASIC environment is set up (with the exception of the baud
rate if it is waiting for the space character), a user initialization routine may be
called if this option is specified. If no address is specified, 4039H is assumed (as
with the PROG6 command). This is NOT conditional: it will be called every time
your program starts. The default is not to call the initialization routine. addr is

specified in hexadecimal. With the -2i option, this option is ignored.

Copyright A 1989-1995 Binary Technology, Inc. 129 Version 5.0

Exit Address

-xaddr Normally, upon completion of your program (by error, STOP, or END), the
microcontroller loops indefinitely, waiting for a system reset. To exit to a

particular address, specify the address with the -xaddr option. With -x and no
value specified, 210EH is the default address (the entry point for M/DP V3). This
is an added convenience if you are running a monitor such as M/DP. If you are

working with the M/DP monitor, you can return to it by using the -x210e for

version 3.0 and -x5 for version 2.0. This option is ignored if -sub option is used.

Warm Start

-w This option is not available when the -uaddr command line option is specified.
When creating a standalone program, your program will clear all external RAM

when started. Using the -w option suppresses this initialization, allowing your

program to warm restart. This does not suppress the autobaud option (-brate).
Warm restart is only performed if the value A5H is stored in external RAM

memory address RAMORG+5FH. If the value A5H is present, your program will
only clear memory up to MTOP and not beyond. Use this flag to protect the
contents of memory above MTOP during a warm restart.

Example 1
bxc51 -p4000 -v6000 -u6400 test

will compile the BASIC source TEST.BAS to begin execution at 4000H with variables stored in

RAM beginning at 6000H through 6400H.

Example 2

BXC51 -p4000 -2i -sub -v1F00H test2

will compile the BASIC source TEST2.BAS into a subroutine at 4000H CALLable by a BASIC
program running in the interpreter. For variables starting at 1F00H you will need MTOP = 1F00H
in your MCS BASIC-52 interpreter program to reserve room for your BXC-51 compiled program
variables. Otherwise, the MCS BASIC-52 interpreter variables may overlap with the BXC-51

compiled variables, which may cause undesirable results.

If you find that you are using certain compiler command line options repeatedly, you can save
yourself some typing by using the DOS environment variable BXCFLAGS. If you always use the
compiler options of example 1 above, you could type

SET BXCFLAGS=-p4000 -v6000 -u6400

when you start working (no spaces on either side of the =). Thereafter, whenever you type

 BXC51 test

BXC-51 will automatically assume the two options -p4000 and -v6000. To verify the
BXCFLAGS options you specified, each time BXC51 is invoked, it
displays the full invocation with BXCFLAGS options included. Add

Copyright A 1989-1995 Binary Technology, Inc. 130 Version 5.0

this SET command to your AUTOEXEC.BAT file so the flags are always the default.
Typed command line options override the environment variable's options.

Copyright A 1989-1995 Binary Technology, Inc. 131 Version 5.0

16. Compiler Error Messages

When compiling your program, errors are bound to arise. The compiler marks the location of the

error with a caret and displays the reason for the error. The following explains those errors and
possible causes that BXC-51 reports. For example,

640 FOR A$=1 to 10
 ^ Illegal FOR index variable

ELSE without preceding IF

An ELSE statement must be on the same line as its matching IF. For multiple line IF statements,
an ELSE statement must be matched to a pervious IF statement. Check your embedded IF
statements for unmatched IF. See page 24.

Illegal FOR index variable

Only floating point, integer, and byte variables may be used as the index variable of a FOR loop.
See page 23.

You cannot change ROM

The CBY() function is read-only. You cannot assign values to it. If you use ROM addressable

RAM, use the XBY() function instead. See CBY function on page 46.

Too many parentheses or expression too complicated

Only 20 levels of parentheses nesting are supported. [This error is no longer appears.]

RND is not an integer function

This keyword does not belong in integer expressions. See page 58.

XTAL is not an integer variable

This key word does not belong in integer expressions. See page 61.

TIME is not an integer variable

This key word does not belong in integer expressions. See page 59.

Bit address too high

Only 0-7 are allowed for byte variables and 0-15 for integer variables. See page 9 for details on
bit data type.

String not allowed here, expecting a number variable

The READ and POP commands are for numerical variables only.

Out of byte variable memory space

There is very limited byte variable space on the 8051. There are only 10 bytes available on

8051/31, DS5000, and some derivative microcontrollers; and 51 bytes on 8052/32
microcontroller. If you are using byte arrays, dimension them smaller. This error may appear

when using byte variables asscociated with a derivative microcontroller when the -tcpu command
line option is missing or incorrect.

Copyright A 1989-1995 Binary Technology, Inc. 132 Version 5.0

Byte array redimensioned to different size

You may not redimension a byte array, particularly to a different size.

Control register not in correct range (128...255)

All control registers defined by DEFCTRL must have an address from 80H to FFH. See page 20.

Memory mapped variables cannot be DIMensioned

The dimension size of a memory mapped variable is irrelevant. Correct syntax is DEFVAR
A()@2000H. See page 20 for DEFVAR command, page 21 for DIM command.

Expecting a line number or label

A line number or label is expected where the caret is pointing. GOTO and GOSUB require it. See
page 23.

Unrecognizable command

BXC-51 has tried to determine what you mean, but a syntax error is preventing it from
deciphering the command.

Expecting an integer expression

A numerical expression (formula) is expected which evaluates to an integer. Floating point
variables and functions are not allowed unless contained within INT() function (see page 47).

) expected

You are missing a matching right parenthesis to a previous open parenthesis or you have provided
more information within the parentheses than is expected.

Integer constant expected

You are not allowed to put an integer expression here at the caret. The integer value must be
specified exactly as a decimal, hexadecimal, or binary number.

(expected

You have used a function and it requires a parenthetical parameter.

Variable expected

The command in question requires you to provide a variable name. This variable may be altered.

, expected

There are less parameters that are expected. Insert a comma and provide the parameters
following it.

Data item expected

A DATA statement can only have numerical expressions. Strings are not allowed. See page 18.

Array variable expected

The DIM command only operates on array variables with dimension sizes (e.g., A(15).) See page
21.

H expected for hexadecimal constant

Either you have a variable name that starts with a digit or you are missing the 'H' which is required
at the end of a hexadecimal constant.

Copyright A 1989-1995 Binary Technology, Inc. 133 Version 5.0

Expression expected

A floating point, integer, or byte expression is expected at the caret.

= expected

BXC-51 thinks you are trying to assign a value to a variable, but the = is missing. You may have
extraneous text at the end of your variable name.

TO expected

A FOR statement requires a TO component; it is expected at the caret. See page 23.

GOTO or GOSUB expected

The ON statement must specify either GOTO or GOSUB at the caret. You may have extraneous
text which should be removed.

expected

USING only allows '#' and '.' as format characters.

0 or 1 expected

Enter either a 0 or 1 after the CLOCK, TRACE, and CTRLC commands. The appropriate
commands are CLOCK0, CLOCK1, TRACE0, TRACE1, CTRLC0, and CTRLC1.

Another expression term expected

You have an operator (such as +) which requires a valid expression term on the right side of it,
e.g. A*, 3+, and A%/ require another term such as A*B, 3+X, A%/2.

String expression expected

Only a string expression is valid at the caret.

: expected

There is extraneous text at the end of the command; a colon is expected to separate commands.

@ expected

To specify the address of a DEFVAR, DEFASM, and DEFCTRL command, @ must precede the
address. There may be extraneous text where @ is expected. See page 19.

Invalid DEF type

Only the commands DEFVAR, DEFASM, DEFCTRL, and DEFFN are allowed as DEF
commands. See page 19.

Identifier/name expected

You must specify a valid name for the Assembly routine's name in DEFASM. The name should
only contain alphanumeric characters. See page 19.

+ expected

The only valid operator for strings is +.

$ expected

The functions that return strings must have a $(i.e., MID$(), LEFT$(), etc.).

Copyright A 1989-1995 Binary Technology, Inc. 134 Version 5.0

} expected

A line label may only be alphanumeric characters surrounded by braces (i.e., {LABEL}; a closing
brace is expected at caret.

Duplicate line label

You have already used this line label on a previous line. Use a different name.

Duplicate line number

You have already used this line number on a previous line. Use a different number.

Too many embedded IFs

Only a maximum of 40 IF-THEN statements can be embedded within each other. You are
probably missing many ENDIF statements. See page 24.

ENDIF without a preceding IF

You have specified ENDIF and the compiler cannot find the immediately preceeding IF. Make
sure you only have one ENDIF per IF statement. Also make sure that the ENDIF is near the IF
statement. The ENDIF may not be inside some subroutine. See page 24.

Expecting THEN

You have started an IF-THEN statement and the THEN keyword is missing. The THEN
keyword must appear on the same line with the IF keyword. See page 24.

Exponentiation not allowed in integer/byte expression

The ** operator is not allowed for integer and byte epxressions. You will have to enumerate the

operation. For example, use A%*A% instead of A%**2, use A%*A%*A% instead of A%**3,
etc. For fractional exponents, use INT(A%**.5).

% expected

The per cent symbol is expected here.

Interrupt name expected (verify correct -t command line option)

Either ONintr, ENABLE intr, or DISABLE intr command is being used and intr is unknown.

Make sure that you have specified the correct derivative microcontroller with the -tcpu command
line option. You may need to check the .CPU file to get the exact spelling for the interrupt name.
(Upper/Lower case is fine.)

Copyright A 1989-1995 Binary Technology, Inc. 135 Version 5.0

17. Run-Time Error Messages

When your compiled program is running, any number of error conditions may be detected and an

error reported. The following section lists those errors and describes why they occurred.

ARITH. UNDERFLOW

When performing floating point operations, if a temporary result is smaller than the smallest
number that BASIC can represent, an arithmetic underflow error is reported. Resulting numbers
smaller than 1E-128 will be in error.

ARITH. OVERFLOW

When performing floating point operations, if a temporary result is larger than the largest number
that BASIC can represent, an arithmetic overflow error is reported. Resulting numbers equal to
or larger than 1E+128 will be in error.

ARRAY SIZE

When accessing an array index that is out of the array bounds (and the -g command line option
was specified), then this error appears. When attempting to re-dimension an array, this error
appears. You may DIMension a variable only once. The variable cannot be used before it is
DIMensioned otherwise the implied DIMension is 10.

A-STACK

This error appears when the Argument Stack gets too large or when a ST@ or POP command
attempts to take a value of an empty Argument Stack. Avoid using LD@ and PUSH so much
because they are using too much stack space.

BAD ARGUMENT

This error appears when a value is used outside an acceptable range. Typically, a value is
expected in the range of 0 to 255 and a larger (or smaller) value is given.

C-STACK

This error appears when too many control structures are on the Control Stack. This can happen if
too many GOSUBs have occurred or if you GOTO out of FOR or DO loops so the loops never
finish. If this error happens at the very beginning of your program, it could mean that the BASIC
environment is not initialized correctly.

DIVIDE BY ZERO

This error appears if you attempt to divide by the number 0 in a floating point, integer, or byte

expression.

I-STACK

This error appears if an expression is too complicated and forces the internal system stack to
overflow.

NO DATA

This error appears when your program attempts to READ more data than present. You may need
to execute RESTORE to begin reading the DATA all over again.

Copyright A 1989-1995 Binary Technology, Inc. 136 Version 5.0

NO FN DEF

This message appears if you are attempting to use a user defined function which has not yet been
defined. All user defined functions begin with FN and appear as FNname(). Array variables that
begin with FN must be renamed to avoid confusion.

ARG MISMATCH

This message appears when the wrong number of arguments are passed to a user defined function.
If a user defined function is defined to take 3 parameters, any other number of parameters causes
this error.

MEMORY ALLOCATION

An attempt was made to use some free memory, but there is no free memory left. At startup, this

error appears if upper and lower bounds were incorrectly set with the -vaddr and -uaddr

command line options and a part of the range is missing a RAM chip. If this error occurs when
manipulating dynamic strings it may be an indication of either (a) an erroneous or changed MTOP

value or (b) out of memory.

PROGRAMMING

An error occurred during the PGM command when it was attempting to program the EPROM.

STRING TOO LARGE

When constructing a string, if the string length exceeds 255 characters, this error arises.

Copyright A 1989-1995 Binary Technology, Inc. 137 Version 5.0

We are constantly looking for ways to improve our products and would appreciate your
comments and suggestions. Please send them to:

Binary Technology, Inc.

P.O. Box 541
Carlisle, MA 01741 USA

or send a fax to

(508) 369-9549

__

Below is a list of other products mentioned in this manual which are available from Binary
Technology, Inc.

"The Intel MCS BASIC-52 Users Manual" Intel Order #270010-003

"BASIC-52 Programming" by Systronix

BASIC Toolkit (BTK) by Binary Technology, Inc.

Infinitor by TAVVE Software Co.

BXC-51 IDE by TAVVE Software Co.

M/DP by Binary Technology, Inc.

Kermit by New York University

QComm by TAVVE Software Co.

BXC-51 Simulator by TAVVE Software Co.

BXC-51 Library Toolkit by TAVVE Software Co.

BXL-Encode by TAVVE Software Co.

Copyright A 1989-1995 Binary Technology, Inc. 138 Version 5.0

